Dynamic Classifier Aggregation using Fuzzy Integral with Interaction-Sensitive Fuzzy Measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00351614" target="_blank" >RIV/67985807:_____/10:00351614 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Classifier Aggregation using Fuzzy Integral with Interaction-Sensitive Fuzzy Measure
Popis výsledku v původním jazyce
In classifier combining, predictions of several classifiers are aggregated into a single prediction in order to improve the classification quality. Among others, fuzzy integrals are commonly used as aggregation operators. Usually, Sugeno lambda-measure is used as the fuzzy measure of the integral. However, interaction between the classifiers in the team (diversity), an important property in classifier combining, cannot be modeled by such fuzzy measure. In this paper, we present an interaction-sensitivefuzzy measure (ISFM), which can incorporate the diversity of the team into the aggregation process. Experimental results on 27 datasets show that the Choquet integral w.r.t. the ISFM outperforms the Choquet integral w.r.t. the Sugeno-lambda measure.
Název v anglickém jazyce
Dynamic Classifier Aggregation using Fuzzy Integral with Interaction-Sensitive Fuzzy Measure
Popis výsledku anglicky
In classifier combining, predictions of several classifiers are aggregated into a single prediction in order to improve the classification quality. Among others, fuzzy integrals are commonly used as aggregation operators. Usually, Sugeno lambda-measure is used as the fuzzy measure of the integral. However, interaction between the classifiers in the team (diversity), an important property in classifier combining, cannot be modeled by such fuzzy measure. In this paper, we present an interaction-sensitivefuzzy measure (ISFM), which can incorporate the diversity of the team into the aggregation process. Experimental results on 27 datasets show that the Choquet integral w.r.t. the ISFM outperforms the Choquet integral w.r.t. the Sugeno-lambda measure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications
ISBN
978-1-4244-8135-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Los Alamitos
Místo konání akce
Cairo
Datum konání akce
29. 11. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—