Dynamic Classifier Aggregation using Interaction-Sensitive Fuzzy Measures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00442868" target="_blank" >RIV/67985807:_____/15:00442868 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fss.2014.09.005" target="_blank" >http://dx.doi.org/10.1016/j.fss.2014.09.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2014.09.005" target="_blank" >10.1016/j.fss.2014.09.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Classifier Aggregation using Interaction-Sensitive Fuzzy Measures
Popis výsledku v původním jazyce
In classifier aggregation using fuzzy integral, the performance of the classifier system depends heavily on the choice of the underlying fuzzy measure. However, little attention has been given to the choice of the fuzzy measure in the literature; usually, the Sugeno lambda-measure is used. A weakness of the Sugeno lambda-measure is that it cannot model the interactions between individual classifiers. That motivated us to develop two novel fuzzy measures and a modification of an existing fuzzy measure which are interaction-sensitive, i.e., they model not only the confidences of classifiers, but also their mutual similarities. The properties of the measures are first studied theoretically, and in the experimental section, the performance of the proposedmeasures is compared to the traditionally used additive measure and Sugeno lambda-measure. Experiments on 23 benchmark datasets and 3 different classifier systems show that the interaction-sensitive fuzzy measures clearly outperform their
Název v anglickém jazyce
Dynamic Classifier Aggregation using Interaction-Sensitive Fuzzy Measures
Popis výsledku anglicky
In classifier aggregation using fuzzy integral, the performance of the classifier system depends heavily on the choice of the underlying fuzzy measure. However, little attention has been given to the choice of the fuzzy measure in the literature; usually, the Sugeno lambda-measure is used. A weakness of the Sugeno lambda-measure is that it cannot model the interactions between individual classifiers. That motivated us to develop two novel fuzzy measures and a modification of an existing fuzzy measure which are interaction-sensitive, i.e., they model not only the confidences of classifiers, but also their mutual similarities. The properties of the measures are first studied theoretically, and in the experimental section, the performance of the proposedmeasures is compared to the traditionally used additive measure and Sugeno lambda-measure. Experiments on 23 benchmark datasets and 3 different classifier systems show that the interaction-sensitive fuzzy measures clearly outperform their
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-17187S" target="_blank" >GA13-17187S: Konstrukce pokročilých srozumitelných klasifikátorů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Svazek periodika
270
Číslo periodika v rámci svazku
1 July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
25-52
Kód UT WoS článku
000352208900002
EID výsledku v databázi Scopus
2-s2.0-84926246510