Assessing the Suitability of Surrogate Models in Evolutionary Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00368902" target="_blank" >RIV/67985807:_____/11:00368902 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the Suitability of Surrogate Models in Evolutionary Optimization
Popis výsledku v původním jazyce
The paper deals with the application of evolutionary algorithms to black-box optimization, frequently encountered in biology, chemistry and engineering. In those areas, however, the evaluation of the black-box fitness is often costly and time-consuming.Such a situation is usually tackled by evaluating the original fitness only sometimes, and evaluating its appropriate response-surface model otherwise, called surrogate model of the fitness. Several kinds of models have been successful in surrogate modelling, and a variety of models of each kind can be obtained through parametrization. Therefore, real-world applications of surrogate modelling entail the problem of assessing the suitability of different models for the optimization task being solved. Thepresent paper attempts to systematically inves- tigate this problem. It surveys available methods to assess model suitability and reports the incorporation of several such methods in our recently proposed approach to surrogate modelling b
Název v anglickém jazyce
Assessing the Suitability of Surrogate Models in Evolutionary Optimization
Popis výsledku anglicky
The paper deals with the application of evolutionary algorithms to black-box optimization, frequently encountered in biology, chemistry and engineering. In those areas, however, the evaluation of the black-box fitness is often costly and time-consuming.Such a situation is usually tackled by evaluating the original fitness only sometimes, and evaluating its appropriate response-surface model otherwise, called surrogate model of the fitness. Several kinds of models have been successful in surrogate modelling, and a variety of models of each kind can be obtained through parametrization. Therefore, real-world applications of surrogate modelling entail the problem of assessing the suitability of different models for the optimization task being solved. Thepresent paper attempts to systematically inves- tigate this problem. It surveys available methods to assess model suitability and reports the incorporation of several such methods in our recently proposed approach to surrogate modelling b
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Učení funkcionálních vztahů z vysoce dimenzionálních dat</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Technologies - Applications and Theory
ISBN
978-80-89557-02-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
31-38
Název nakladatele
PONT s.r.o.
Místo vydání
Seňa
Místo konání akce
Ždiar
Datum konání akce
17. 9. 2011
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—