Localizing Sources of Brain Activity Relevant to Motor Imagery Brain-Computer Interface Performance, Using Individual Head Geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00377144" target="_blank" >RIV/67985807:_____/12:00377144 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86085647
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Localizing Sources of Brain Activity Relevant to Motor Imagery Brain-Computer Interface Performance, Using Individual Head Geometry
Popis výsledku v původním jazyce
It is shown that despite the fact that the motor imagery based brain computer interface does not rely on any particular feature of EEG signal defined a priori, system designed on the basis of EEG signal classifier is indeed controlled by the signals originating in the motor cortex. To prove this the most distinguishable EEG patterns were extracted by means of Independent Component Analysis with consequent cross-validation procedure used to select the independent components significant to the brain computer interface performance. Sources of the brain activity represented by the chosen independent components were located using single dipole approximation with individual head geometry model. These sources were found in the bottom of the central sulcus, area 3a, for each subject. These results are in good agreement with the outcome of fMRI study conducted under the same conditions.
Název v anglickém jazyce
Localizing Sources of Brain Activity Relevant to Motor Imagery Brain-Computer Interface Performance, Using Individual Head Geometry
Popis výsledku anglicky
It is shown that despite the fact that the motor imagery based brain computer interface does not rely on any particular feature of EEG signal defined a priori, system designed on the basis of EEG signal classifier is indeed controlled by the signals originating in the motor cortex. To prove this the most distinguishable EEG patterns were extracted by means of Independent Component Analysis with consequent cross-validation procedure used to select the independent components significant to the brain computer interface performance. Sources of the brain activity represented by the chosen independent components were located using single dipole approximation with individual head geometry model. These sources were found in the bottom of the central sulcus, area 3a, for each subject. These results are in good agreement with the outcome of fMRI study conducted under the same conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Neural Networks - ISNN 2012
ISBN
978-3-642-31345-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
369-378
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Shenyang
Datum konání akce
11. 7. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—