Klasické a současné postupy ve shlukové analýze
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00399121" target="_blank" >RIV/67985807:_____/13:00399121 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Klasické a současné postupy ve shlukové analýze
Popis výsledku v původním jazyce
Článek se zaměřuje na vývoj vybraných postupů ve shlukové analýze. Jde o nedávno navržené míry podobnosti pro objekty charakterizované nominálními proměnnými, vývoj algoritmů pro k-shlukování a vývoj metod pro shlukování v případě velkých datových souborů a kategoriálních dat. U algoritmů pro k-shlukování je pozornost věnována zohlednění neurčitosti při zařazování objektů do shluků, konkrétně algoritmům FCM (fuzzy k-průměrů), PCM, FPCM, RCM, RFCM a RFPCM. Pro velké datové soubory jsou zařazeny algoritmyCURE, ROCK, CLARA, CLARANS a BIRCH, pro shlukování kategoriálních dat pak algoritmy COOLCAT a ROCK. Zmíněna je též dvoukroková shluková analýza pro shlukování velkých datových souborů s proměnnými různých typů.
Název v anglickém jazyce
Classical and recent approaches in cluster analysis
Popis výsledku anglicky
The paper focuses on the development of selected approaches in cluster analysis. There are recently proposed similarity measures for objects characterized by nominal variables, development of algorithms for k-clustering and development of methods for clustering large data files and categorical data. As concerns algorithms for k-clustering, attention is paid to take into account the uncertainty in classifying objects into clusters, namely FCM (fuzzy k-means), PCM, FPCM, RCM, RFCM and RFPCM algorithms. For large data files, algorithms CURE, ROCK, CLARA, CLARANS and BIRCH are included, for categorical data clustering there are COOLCAT and ROCK algorithms. Two-step cluster analysis to cluster large data sets with variables of different types is mentioned.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Analýza dat 2013. Statistické metody pro technologii a výzkum
ISBN
—
ISSN
1805-6903
e-ISSN
—
Počet stran výsledku
10
Strana od-do
109-118
Název nakladatele
TriloByte Statistical Software
Místo vydání
Pardubice
Místo konání akce
Pardubice
Datum konání akce
19. 11. 2013
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—