Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Highly Robust Estimation of the Autocorrelation Coefficient

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00431671" target="_blank" >RIV/67985807:_____/14:00431671 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Highly Robust Estimation of the Autocorrelation Coefficient

  • Popis výsledku v původním jazyce

    The classical autocorrelation coefficient estimator in the time series context is very sensitive to the presence of outlying measurements in the data. This paper proposes several new robust estimators of the autocorrelation coefficient. First, we consider an autoregressive process of the first order AR(1) to be observed. Robust estimators of the autocorrelation coefficient are proposed in a straightforward way based on robust regression. Further, we consider the task of robust estimation of the autocorrelation coefficient of residuals of linear regression. The task is connected to verifying the assumption of independence of residuals and robust estimators of the autocorrelation coefficient are defined based on the Durbin-Watson test statistic for robust regression. The main result is obtained for the implicitly weighted autocorrelation coefficient with small weights assigned to outlying measurements. This estimator is based on the least weighted squares regression and we exploit its as

  • Název v anglickém jazyce

    Highly Robust Estimation of the Autocorrelation Coefficient

  • Popis výsledku anglicky

    The classical autocorrelation coefficient estimator in the time series context is very sensitive to the presence of outlying measurements in the data. This paper proposes several new robust estimators of the autocorrelation coefficient. First, we consider an autoregressive process of the first order AR(1) to be observed. Robust estimators of the autocorrelation coefficient are proposed in a straightforward way based on robust regression. Further, we consider the task of robust estimation of the autocorrelation coefficient of residuals of linear regression. The task is connected to verifying the assumption of independence of residuals and robust estimators of the autocorrelation coefficient are defined based on the Durbin-Watson test statistic for robust regression. The main result is obtained for the implicitly weighted autocorrelation coefficient with small weights assigned to outlying measurements. This estimator is based on the least weighted squares regression and we exploit its as

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 8th International Days of Statistics and Economics

  • ISBN

    978-80-87990-02-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    588-597

  • Název nakladatele

    Melandrium

  • Místo vydání

    Slaný

  • Místo konání akce

    Prague

  • Datum konání akce

    11. 9. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000350226700058