On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00444138" target="_blank" >RIV/67985807:_____/15:00444138 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/140987936" target="_blank" >http://dx.doi.org/10.1137/140987936</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/140987936" target="_blank" >10.1137/140987936</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems
Popis výsledku v původním jazyce
We study the numerical behavior of stationary one-step or two-step matrix splitting iteration methods for solving large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with the matrix splittings may considerably influence the accuracy of the approximate solutions computed in finite precision arithmetic. For a general stationary matrix splitting iteration method, we analyze two mathematically equivalent implementations and discuss the conditions whenthey are componentwise or normwise forward or backward stable. We show that a stationary iteration scheme in the residual-updating form is significantly more accurate than in its direct-splitting form when employing inexact inner solves. Theoretical results are illustrated by numerical experiments with the PMHSS method and with the HSS method representing the classes of inexact one-step and two-step splitting iteration methods, respectively.
Název v anglickém jazyce
On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems
Popis výsledku anglicky
We study the numerical behavior of stationary one-step or two-step matrix splitting iteration methods for solving large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with the matrix splittings may considerably influence the accuracy of the approximate solutions computed in finite precision arithmetic. For a general stationary matrix splitting iteration method, we analyze two mathematically equivalent implementations and discuss the conditions whenthey are componentwise or normwise forward or backward stable. We show that a stationary iteration scheme in the residual-updating form is significantly more accurate than in its direct-splitting form when employing inexact inner solves. Theoretical results are illustrated by numerical experiments with the PMHSS method and with the HSS method representing the classes of inexact one-step and two-step splitting iteration methods, respectively.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-06684S" target="_blank" >GA13-06684S: Iterační metody ve výpočetní matematice: Analýza, předpodmínění a aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1716-1737
Kód UT WoS článku
000360692100004
EID výsledku v databázi Scopus
2-s2.0-84941066930