Structured, Physically Inspired (Gray Box) Models Versus Black Box Modeling for Forecasting the Output Power of Photovoltaic Plants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00470352" target="_blank" >RIV/67985807:_____/17:00470352 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00320110
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.energy.2017.01.015" target="_blank" >http://dx.doi.org/10.1016/j.energy.2017.01.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2017.01.015" target="_blank" >10.1016/j.energy.2017.01.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structured, Physically Inspired (Gray Box) Models Versus Black Box Modeling for Forecasting the Output Power of Photovoltaic Plants
Popis výsledku v původním jazyce
Two advanced models for forecasting the output power of photovoltaic plants are discussed in details: a black-box Takagi-Sugeno fuzzy model and a physically inspired, semiparametric statistical model (Generalized Additive Model, GAM) based on smoothing splines. The structure of the two models, their strengths and weaknesses, are presented. The models performance is thoroughly compared with the performance of a simple linear model tested under the frame of the European Cooperation in Science and Technology (COST) Action "Weather Intelligence for Renewable Energies", as a benchmark used also in the forecasting exercise reported in Sperati et al. Energies 8 (2015) 9594. The models are used to forecasting the output power at time horizons of 1-72 h ahead. The data used during the COST competition are used here as input. The present study extends beyond the traditional evaluation of overall model accuracy. Detailed influences of seasonal effects, sun elevation angle and solar irradiance level upon the models performance are assessed. While the accuracy of the simple linear model is not entirely bad, it differs in important details from the two advanced forecasting models. The results show that a moderate, carefully chosen increase in model structure complexity can improve the predictive performance. Suitable penalty on model complexity can help both to enforce parsimony and improve practical forecasting abilities, to a certain extent. The physically inspired GAM comes out as the best performing model.
Název v anglickém jazyce
Structured, Physically Inspired (Gray Box) Models Versus Black Box Modeling for Forecasting the Output Power of Photovoltaic Plants
Popis výsledku anglicky
Two advanced models for forecasting the output power of photovoltaic plants are discussed in details: a black-box Takagi-Sugeno fuzzy model and a physically inspired, semiparametric statistical model (Generalized Additive Model, GAM) based on smoothing splines. The structure of the two models, their strengths and weaknesses, are presented. The models performance is thoroughly compared with the performance of a simple linear model tested under the frame of the European Cooperation in Science and Technology (COST) Action "Weather Intelligence for Renewable Energies", as a benchmark used also in the forecasting exercise reported in Sperati et al. Energies 8 (2015) 9594. The models are used to forecasting the output power at time horizons of 1-72 h ahead. The data used during the COST competition are used here as input. The present study extends beyond the traditional evaluation of overall model accuracy. Detailed influences of seasonal effects, sun elevation angle and solar irradiance level upon the models performance are assessed. While the accuracy of the simple linear model is not entirely bad, it differs in important details from the two advanced forecasting models. The results show that a moderate, carefully chosen increase in model structure complexity can improve the predictive performance. Suitable penalty on model complexity can help both to enforce parsimony and improve practical forecasting abilities, to a certain extent. The physically inspired GAM comes out as the best performing model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
15 February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
792-802
Kód UT WoS článku
000397356400061
EID výsledku v databázi Scopus
2-s2.0-85009950329