The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474810" target="_blank" >RIV/67985807:_____/17:00474810 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/17:00474810
Výsledek na webu
<a href="http://dx.doi.org/10.1137/140982842" target="_blank" >http://dx.doi.org/10.1137/140982842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/140982842" target="_blank" >10.1137/140982842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition
Popis výsledku v původním jazyce
In a series of four papers we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(0.5+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. The method to prove our result follows a strategy similar to approaches that employ the Szemerédi regularity lemma: We decompose the graph $G$, find a suitable combinatorial structure inside the decomposition, and then embed the tree $T$ into $G$ using this structure. Since for sparse graphs $G$, the decomposition given by the regularity lemma is not helpful, we use a more general decomposition technique. We show that each graph can be decomposed into vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. In this paper, we introduce this novel decomposition technique.
Název v anglickém jazyce
The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition
Popis výsledku anglicky
In a series of four papers we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(0.5+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. The method to prove our result follows a strategy similar to approaches that employ the Szemerédi regularity lemma: We decompose the graph $G$, find a suitable combinatorial structure inside the decomposition, and then embed the tree $T$ into $G$ using this structure. Since for sparse graphs $G$, the decomposition given by the regularity lemma is not helpful, we use a more general decomposition technique. We show that each graph can be decomposed into vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. In this paper, we introduce this novel decomposition technique.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
945-982
Kód UT WoS článku
000404770300021
EID výsledku v databázi Scopus
2-s2.0-85021932060