A Robust Pre-processing of BeadChip Microarray Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00489959" target="_blank" >RIV/67985807:_____/18:00489959 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.bbe.2018.04.005" target="_blank" >http://dx.doi.org/10.1016/j.bbe.2018.04.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bbe.2018.04.005" target="_blank" >10.1016/j.bbe.2018.04.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Robust Pre-processing of BeadChip Microarray Images
Popis výsledku v původním jazyce
Microarray images commonly used in gene expression studies are heavily contaminated by noise and/or outlying values (outliers). Unfortunately, standard methodology for the analysis of Illumina BeadChip microarray images turns out to be too vulnerable to data contamination by outliers. In this paper, an alternative approach to low-level pre-processing of images obtained by the BeadChip microarray technology is proposed. The novel approach robustifies the standard methodology in a complex way and thus ensures a sufficient robustness (resistance) to outliers. A gene expression data set from a cardiovascular genetic study is analyzed and the performance of the novel robust approach is compared with the standard methodology. The robust approach is able to detect and delete a larger percentage of outliers. More importantly, gene expressions are estimated more precisely. As a consequence, also the performance of a subsequently performed classification task to two groups (patients vs. control persons) is improved over the cardiovascular gene expression data set. A further improvement was obtained when considering weighted gene expression values, where the weights correspond to a robust estimate of variability of the measurements for each individual gene transcript.
Název v anglickém jazyce
A Robust Pre-processing of BeadChip Microarray Images
Popis výsledku anglicky
Microarray images commonly used in gene expression studies are heavily contaminated by noise and/or outlying values (outliers). Unfortunately, standard methodology for the analysis of Illumina BeadChip microarray images turns out to be too vulnerable to data contamination by outliers. In this paper, an alternative approach to low-level pre-processing of images obtained by the BeadChip microarray technology is proposed. The novel approach robustifies the standard methodology in a complex way and thus ensures a sufficient robustness (resistance) to outliers. A gene expression data set from a cardiovascular genetic study is analyzed and the performance of the novel robust approach is compared with the standard methodology. The robust approach is able to detect and delete a larger percentage of outliers. More importantly, gene expressions are estimated more precisely. As a consequence, also the performance of a subsequently performed classification task to two groups (patients vs. control persons) is improved over the cardiovascular gene expression data set. A further improvement was obtained when considering weighted gene expression values, where the weights correspond to a robust estimate of variability of the measurements for each individual gene transcript.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biocybernetics and Biomedical Engineering
ISSN
0208-5216
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
8
Strana od-do
556-563
Kód UT WoS článku
000442914100011
EID výsledku v databázi Scopus
2-s2.0-85046878739