Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-supervised and Active Learning in Video Scene Classification from Statistical Features

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493293" target="_blank" >RIV/67985807:_____/18:00493293 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf" target="_blank" >http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-supervised and Active Learning in Video Scene Classification from Statistical Features

  • Popis výsledku v původním jazyce

    PUBLISHED: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.), s. 24-35. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Dublin (IE), 10.09.2018-14.09.2018]. Grant CEP: GA ČR(CZ) GA18-18080S. ABSTRACT: In multimedia classification, the background is usually considered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a background model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and followup content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed approach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.

  • Název v anglickém jazyce

    Semi-supervised and Active Learning in Video Scene Classification from Statistical Features

  • Popis výsledku anglicky

    PUBLISHED: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.), s. 24-35. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Dublin (IE), 10.09.2018-14.09.2018]. Grant CEP: GA ČR(CZ) GA18-18080S. ABSTRACT: In multimedia classification, the background is usually considered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a background model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and followup content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed approach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů