Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493293" target="_blank" >RIV/67985807:_____/18:00493293 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf" target="_blank" >http://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Popis výsledku v původním jazyce
PUBLISHED: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.), s. 24-35. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Dublin (IE), 10.09.2018-14.09.2018]. Grant CEP: GA ČR(CZ) GA18-18080S. ABSTRACT: In multimedia classification, the background is usually considered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a background model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and followup content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed approach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.
Název v anglickém jazyce
Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Popis výsledku anglicky
PUBLISHED: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.), s. 24-35. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Dublin (IE), 10.09.2018-14.09.2018]. Grant CEP: GA ČR(CZ) GA18-18080S. ABSTRACT: In multimedia classification, the background is usually considered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a background model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and followup content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed approach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů