Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00324678" target="_blank" >RIV/68407700:21240/18:00324678 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Popis výsledku v původním jazyce
In multimedia classification, the background is usually con- sidered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a back- ground model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and follow- up content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed ap- proach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.
Název v anglickém jazyce
Semi-supervised and Active Learning in Video Scene Classification from Statistical Features
Popis výsledku anglicky
In multimedia classification, the background is usually con- sidered an unwanted part of input data and is often modeled only to be removed in later processing. Contrary to that, we believe that a back- ground model (i.e., the scene in which the picture or video shot is taken) should be included as an essential feature for both indexing and follow- up content processing. Information about image background, however, is not usually the main target in the labeling process and the number of annotated samples is very limited. Therefore, we propose to use a combination of semi-supervised and active learning to improve the performance of our scene classifier, specifically a combination of self-training with uncertainty sampling. As a result, we utilize a combination of statistical features extractor, a feed-forward neural network and support vector machine classifier, which consistently achieves higher accuracy on less diverse data. With the proposed ap- proach, we are currently able to achieve precision over 80% on a dataset trained on a single series of a popular TV show.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Interactive Adaptive Learning (IAL 2018) co-located with European Conference on Machine Learning (ECML 2018) and Principles and Practice of Knowledge Discovery in Databases (PKDD 2018)
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
12
Strana od-do
24-35
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Dublin
Datum konání akce
10. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—