Sequential model building in symbolic regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00512085" target="_blank" >RIV/67985807:_____/19:00512085 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00350568
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2473/paper5.pdf" target="_blank" >http://ceur-ws.org/Vol-2473/paper5.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential model building in symbolic regression
Popis výsledku v původním jazyce
Symbolic Regression is a supervised learning technique for regression based on Genetic Programming. A popular algorithm is the Multi-Gene Genetic Programming which builds models as a linear combination of a number of components which are all built together. However, in recent years a different approach emerged, represented by the Sequential Symbolic Regression algorithm, which builds the model sequentially, one component at a time, and the components are combined using a method based on geometric semantic crossover. In this article we show that the SSR algorithm effectively produces linear combination of components and we introduce another sequential approach very similar to classical ensemble method of boosting. All algorithms are compared with MGGP as a baseline on a number of real-world datasets. The results show that the sequential approaches are overall worse than MGGP both in terms of accuracy and model size.n
Název v anglickém jazyce
Sequential model building in symbolic regression
Popis výsledku anglicky
Symbolic Regression is a supervised learning technique for regression based on Genetic Programming. A popular algorithm is the Multi-Gene Genetic Programming which builds models as a linear combination of a number of components which are all built together. However, in recent years a different approach emerged, represented by the Sequential Symbolic Regression algorithm, which builds the model sequentially, one component at a time, and the components are combined using a method based on geometric semantic crossover. In this article we show that the SSR algorithm effectively produces linear combination of components and we introduce another sequential approach very similar to classical ensemble method of boosting. All algorithms are compared with MGGP as a baseline on a number of real-world datasets. The results show that the sequential approaches are overall worse than MGGP both in terms of accuracy and model size.n
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2019: Information Technologies – Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
7
Strana od-do
51-57
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Donovaly
Datum konání akce
20. 9. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—