Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sequential model building in symbolic regression

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00350568" target="_blank" >RIV/68407700:21230/19:00350568 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/19:00512085

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2473/paper5.pdf" target="_blank" >http://ceur-ws.org/Vol-2473/paper5.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sequential model building in symbolic regression

  • Popis výsledku v původním jazyce

    Symbolic Regression is a supervised learning technique for regression based on Genetic Programming. A popular algorithm is the Multi-Gene Genetic Programming which builds models as a linear combination of a number of components which are all built together. However, in recent years a different approach emerged, represented by the Sequential Symbolic Regression algorithm, which builds the model sequentially, one component at a time, and the components are combined using a method based on geometric semantic crossover. In this article we show that the SSR algorithm effectively produces linear combination of components and we introduce another sequential approach very similar to classical ensemble method of boosting. All algorithms are compared with MGGP as a baseline on a number of real-world datasets. The results show that the sequential approaches are overall worse than MGGP both in terms of accuracy and model size.

  • Název v anglickém jazyce

    Sequential model building in symbolic regression

  • Popis výsledku anglicky

    Symbolic Regression is a supervised learning technique for regression based on Genetic Programming. A popular algorithm is the Multi-Gene Genetic Programming which builds models as a linear combination of a number of components which are all built together. However, in recent years a different approach emerged, represented by the Sequential Symbolic Regression algorithm, which builds the model sequentially, one component at a time, and the components are combined using a method based on geometric semantic crossover. In this article we show that the SSR algorithm effectively produces linear combination of components and we introduce another sequential approach very similar to classical ensemble method of boosting. All algorithms are compared with MGGP as a baseline on a number of real-world datasets. The results show that the sequential approaches are overall worse than MGGP both in terms of accuracy and model size.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 19th Conference Information Technologies - Applications and Theory (ITAT 2019)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    51-57

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Donovaly

  • Datum konání akce

    20. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku