A Central Limit Theorem for Almost Local Additive Tree Functionals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00510355" target="_blank" >RIV/67985807:_____/20:00510355 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00453-019-00622-4" target="_blank" >http://dx.doi.org/10.1007/s00453-019-00622-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-019-00622-4" target="_blank" >10.1007/s00453-019-00622-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Central Limit Theorem for Almost Local Additive Tree Functionals
Popis výsledku v původním jazyce
An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Svante Janson recently proved a central limit theorem for additive functionals of conditioned Galton–Watson trees under the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of the root. We extend his result to functionals that are “almost local” in a certain sense, thus covering a wider range of functionals. The notion of almost local functional intuitively means that the toll function can be approximated well by considering only a neighbourhood of the root. Our main result is illustrated by several explicit examples including natural graph-theoretic parameters such as the number of independent sets, the number of matchings, and the number of dominating sets. We also cover a functional stemming from a tree reduction procedure that was studied by Hackl, Heuberger, Kropf, and Prodinger.
Název v anglickém jazyce
A Central Limit Theorem for Almost Local Additive Tree Functionals
Popis výsledku anglicky
An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Svante Janson recently proved a central limit theorem for additive functionals of conditioned Galton–Watson trees under the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of the root. We extend his result to functionals that are “almost local” in a certain sense, thus covering a wider range of functionals. The notion of almost local functional intuitively means that the toll function can be approximated well by considering only a neighbourhood of the root. Our main result is illustrated by several explicit examples including natural graph-theoretic parameters such as the number of independent sets, the number of matchings, and the number of dominating sets. We also cover a functional stemming from a tree reduction procedure that was studied by Hackl, Heuberger, Kropf, and Prodinger.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremální teorie grafů a aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
—
Svazek periodika
82
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
642-679
Kód UT WoS článku
000511594700007
EID výsledku v databázi Scopus
2-s2.0-85073825080