Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Central Limit Theorem for Almost Local Additive Tree Functionals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00510355" target="_blank" >RIV/67985807:_____/20:00510355 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00453-019-00622-4" target="_blank" >http://dx.doi.org/10.1007/s00453-019-00622-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-019-00622-4" target="_blank" >10.1007/s00453-019-00622-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Central Limit Theorem for Almost Local Additive Tree Functionals

  • Popis výsledku v původním jazyce

    An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Svante Janson recently proved a central limit theorem for additive functionals of conditioned Galton–Watson trees under the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of the root. We extend his result to functionals that are “almost local” in a certain sense, thus covering a wider range of functionals. The notion of almost local functional intuitively means that the toll function can be approximated well by considering only a neighbourhood of the root. Our main result is illustrated by several explicit examples including natural graph-theoretic parameters such as the number of independent sets, the number of matchings, and the number of dominating sets. We also cover a functional stemming from a tree reduction procedure that was studied by Hackl, Heuberger, Kropf, and Prodinger.

  • Název v anglickém jazyce

    A Central Limit Theorem for Almost Local Additive Tree Functionals

  • Popis výsledku anglicky

    An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Svante Janson recently proved a central limit theorem for additive functionals of conditioned Galton–Watson trees under the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of the root. We extend his result to functionals that are “almost local” in a certain sense, thus covering a wider range of functionals. The notion of almost local functional intuitively means that the toll function can be approximated well by considering only a neighbourhood of the root. Our main result is illustrated by several explicit examples including natural graph-theoretic parameters such as the number of independent sets, the number of matchings, and the number of dominating sets. We also cover a functional stemming from a tree reduction procedure that was studied by Hackl, Heuberger, Kropf, and Prodinger.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremální teorie grafů a aplikace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

  • Svazek periodika

    82

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    38

  • Strana od-do

    642-679

  • Kód UT WoS článku

    000511594700007

  • EID výsledku v databázi Scopus

    2-s2.0-85073825080