On Robust Estimation of Error Variance in (Highly) Robust Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00522581" target="_blank" >RIV/67985807:_____/20:00522581 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/20:00583584
Výsledek na webu
<a href="http://hdl.handle.net/11104/0307056" target="_blank" >http://hdl.handle.net/11104/0307056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/msr-2020-0002" target="_blank" >10.2478/msr-2020-0002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Robust Estimation of Error Variance in (Highly) Robust Regression
Popis výsledku v původním jazyce
The linear regression model requires robust estimation of parameters, if the measured data are contaminated by outlying measurements (outliers). While a number of robust estimators (i.e. resistant to outliers) have been proposed, this paper is focused on estimating the variance of the random regression errors. We particularly focus on the least weighted squares estimator, for which we review its properties and´propose new weighting schemes together with corresponding estimates for the variance of disturbances. An illustrative example revealing the idea of the estimator to down-weight individual measurements is presented. Further, two numerical simulations presented here allow to compare various estimators. They verify the theoretical results for the least weighted squares to be meaningful. MM-estimators turn out to yield the best results in the simulations in terms of both accuracy and precision. The least weighted squares (with suitable weights) remain only slightly behind in terms of the mean square error and are able to outperform the much more popular least trimmed squares estimator, especially for smaller sample sizes
Název v anglickém jazyce
On Robust Estimation of Error Variance in (Highly) Robust Regression
Popis výsledku anglicky
The linear regression model requires robust estimation of parameters, if the measured data are contaminated by outlying measurements (outliers). While a number of robust estimators (i.e. resistant to outliers) have been proposed, this paper is focused on estimating the variance of the random regression errors. We particularly focus on the least weighted squares estimator, for which we review its properties and´propose new weighting schemes together with corresponding estimates for the variance of disturbances. An illustrative example revealing the idea of the estimator to down-weight individual measurements is presented. Further, two numerical simulations presented here allow to compare various estimators. They verify the theoretical results for the least weighted squares to be meaningful. MM-estimators turn out to yield the best results in the simulations in terms of both accuracy and precision. The least weighted squares (with suitable weights) remain only slightly behind in terms of the mean square error and are able to outperform the much more popular least trimmed squares estimator, especially for smaller sample sizes
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science Review
ISSN
1335-8871
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
9
Strana od-do
6-14
Kód UT WoS článku
000517823000002
EID výsledku v databázi Scopus
2-s2.0-85081789945