Classification Methods for Internet Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00522793" target="_blank" >RIV/67985807:_____/20:00522793 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00339837
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-36962-0" target="_blank" >http://dx.doi.org/10.1007/978-3-030-36962-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-36962-0" target="_blank" >10.1007/978-3-030-36962-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification Methods for Internet Applications
Popis výsledku v původním jazyce
This book explores internet applications in which a crucial role is played by classification, such as spam filtering, recommender systems, malware detection, intrusion detection and sentiment analysis. It explains how such classification problems can be solved using various statistical and machine learning methods, including K nearest neighbours, Bayesian classifiers, the logit method, discriminant analysis, several kinds of artificial neural networks, support vector machines, classification trees and other kinds of rule-based methods, as well as random forests and other kinds of classifier ensembles. The book covers a wide range of available classification methods and their variants, not only those that have already been used in the considered kinds of applications, but also those that have the potential to be used in them in the future. The book is a valuable resource for post-graduate students and professionals alike.
Název v anglickém jazyce
Classification Methods for Internet Applications
Popis výsledku anglicky
This book explores internet applications in which a crucial role is played by classification, such as spam filtering, recommender systems, malware detection, intrusion detection and sentiment analysis. It explains how such classification problems can be solved using various statistical and machine learning methods, including K nearest neighbours, Bayesian classifiers, the logit method, discriminant analysis, several kinds of artificial neural networks, support vector machines, classification trees and other kinds of rule-based methods, as well as random forests and other kinds of classifier ensembles. The book covers a wide range of available classification methods and their variants, not only those that have already been used in the considered kinds of applications, but also those that have the potential to be used in them in the future. The book is a valuable resource for post-graduate students and professionals alike.
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-3-030-36961-3
Počet stran knihy
281
Název nakladatele
Cham
Místo vydání
Springer
Kód UT WoS knihy
—