Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generalized Spectrum of Second Order Differential Operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532921" target="_blank" >RIV/67985807:_____/20:00532921 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/20:10422198

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/20M1316159" target="_blank" >http://dx.doi.org/10.1137/20M1316159</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1316159" target="_blank" >10.1137/20M1316159</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generalized Spectrum of Second Order Differential Operators

  • Popis výsledku v původním jazyce

    We analyze the spectrum of the operator Delta(-1)[Delta . (K del u)], where Delta denotes the Laplacian and K = K(x, y) is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition K = Q Lambda Q(T), where Q = Q(x, y) is an orthogonal matrix and Lambda = Lambda(x, y) is a diagonal matrix. More precisely, provided that K is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of A. The involved domain is assumed to be bounded and Lipschitz, and both homogeneous Dirichlet and homogeneous Neumann boundary conditions are considered. We study operators defined on infinite dimensional Sobolev spaces. Our theoretical investigations are illuminated by numerical experiments, using discretized problems. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).

  • Název v anglickém jazyce

    Generalized Spectrum of Second Order Differential Operators

  • Popis výsledku anglicky

    We analyze the spectrum of the operator Delta(-1)[Delta . (K del u)], where Delta denotes the Laplacian and K = K(x, y) is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition K = Q Lambda Q(T), where Q = Q(x, y) is an orthogonal matrix and Lambda = Lambda(x, y) is a diagonal matrix. More precisely, provided that K is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of A. The involved domain is assumed to be bounded and Lipschitz, and both homogeneous Dirichlet and homogeneous Neumann boundary conditions are considered. We study operators defined on infinite dimensional Sobolev spaces. Our theoretical investigations are illuminated by numerical experiments, using discretized problems. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Numerical Analysis

  • ISSN

    0036-1429

  • e-ISSN

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    2193-2211

  • Kód UT WoS článku

    000568220000008

  • EID výsledku v databázi Scopus

    2-s2.0-85091816867