Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Loss Functions for Clustering in Multi-instance Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00533916" target="_blank" >RIV/67985807:_____/20:00533916 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/20:00348526 RIV/68407700:21340/20:00348526

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2718/paper05.pdf" target="_blank" >http://ceur-ws.org/Vol-2718/paper05.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Loss Functions for Clustering in Multi-instance Learning

  • Popis výsledku v původním jazyce

    Multi-instance learning belongs to one of recently fast developing areas of machine learning. It is a supervised learning method and this paper reports research into its unsupervised counterpart, multi-instance clustering. Whereas traditional clustering clusters points, multiinstance clustering clusters bags, i.e. multisets of points or of other kinds of objects. The paper focuses on the problem of loss functions for clustering. Three sophisticated loss functions used for clustering of points, contrastive predictive coding, triplet loss and magnet loss, are elaborated for multi-instance clustering. Finally, they are compared on 18 benchmark datasets, as well as on a real-world dataset.

  • Název v anglickém jazyce

    Loss Functions for Clustering in Multi-instance Learning

  • Popis výsledku anglicky

    Multi-instance learning belongs to one of recently fast developing areas of machine learning. It is a supervised learning method and this paper reports research into its unsupervised counterpart, multi-instance clustering. Whereas traditional clustering clusters points, multiinstance clustering clusters bags, i.e. multisets of points or of other kinds of objects. The paper focuses on the problem of loss functions for clustering. Three sophisticated loss functions used for clustering of points, contrastive predictive coding, triplet loss and magnet loss, are elaborated for multi-instance clustering. Finally, they are compared on 18 benchmark datasets, as well as on a real-world dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 20th Conference Information Technologies - Applications and Theory

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    137-146

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Oravská Lesná

  • Datum konání akce

    18. 9. 2020

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku