Comparison of Parametric and Semiparametric Survival Regression Models with Kernel Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00541888" target="_blank" >RIV/67985807:_____/21:00541888 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00209805:_____/21:00078578 RIV/00216224:14310/21:00121410
Výsledek na webu
<a href="http://dx.doi.org/10.1080/00949655.2021.1906875" target="_blank" >http://dx.doi.org/10.1080/00949655.2021.1906875</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00949655.2021.1906875" target="_blank" >10.1080/00949655.2021.1906875</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Parametric and Semiparametric Survival Regression Models with Kernel Estimation
Popis výsledku v původním jazyce
The modelling of censored survival data is based on different estimations of the conditional hazard function. When survival time follows a known distribution, parametric models are useful. This strong assumption is replaced by a weaker in the case of semiparametric models. For instance, the frequently used model suggested by Cox is based on the proportionality of hazards. These models use non-parametric methods to estimate some baseline hazard and parametric methods to estimate the influence of a covariate. An alternative approach is to use smoothing that is more flexible. In this paper, two types of kernel smoothing and some bandwidth selection techniques are introduced. Application to real data shows different interpretations for each approach. The extensive simulation study is aimed at comparing different approaches and assessing their benefits. Kernel estimation is demonstrated to be very helpful for verifying assumptions of parametric or semiparametric models and is able to capture changes in the hazard function in both time and covariate directions.
Název v anglickém jazyce
Comparison of Parametric and Semiparametric Survival Regression Models with Kernel Estimation
Popis výsledku anglicky
The modelling of censored survival data is based on different estimations of the conditional hazard function. When survival time follows a known distribution, parametric models are useful. This strong assumption is replaced by a weaker in the case of semiparametric models. For instance, the frequently used model suggested by Cox is based on the proportionality of hazards. These models use non-parametric methods to estimate some baseline hazard and parametric methods to estimate the influence of a covariate. An alternative approach is to use smoothing that is more flexible. In this paper, two types of kernel smoothing and some bandwidth selection techniques are introduced. Application to real data shows different interpretations for each approach. The extensive simulation study is aimed at comparing different approaches and assessing their benefits. Kernel estimation is demonstrated to be very helpful for verifying assumptions of parametric or semiparametric models and is able to capture changes in the hazard function in both time and covariate directions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018125" target="_blank" >LM2018125: Banka klinických vzorků</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Statistical Computation and Simulation
ISSN
0094-9655
e-ISSN
1563-5163
Svazek periodika
91
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
2717-2739
Kód UT WoS článku
000638231000001
EID výsledku v databázi Scopus
2-s2.0-85104074971