Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Functional Data Analysis and Visualisation of Three-Dimensional Surface Shape

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00542813" target="_blank" >RIV/67985807:_____/21:00542813 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/21:00121551

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1111/rssc.12482" target="_blank" >http://dx.doi.org/10.1111/rssc.12482</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/rssc.12482" target="_blank" >10.1111/rssc.12482</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Functional Data Analysis and Visualisation of Three-Dimensional Surface Shape

  • Popis výsledku v původním jazyce

    The advent of high-resolution imaging has made data on surface shape widespread. Methods for the analysis of shape based on landmarks are well established but high-resolution data require a functional approach. The starting point is a systematic and consistent description of each surface shape and a method for creating this is described. Three innovative forms of analysis are then introduced. The first uses surface integration to address issues of registration, principal component analysis and the measurement of asymmetry, all in functional form. Computational issues are handled through discrete approximations to integrals, based in this case on appropriate surface area weighted sums. The second innovation is to focus on sub-spaces where interesting behaviour such as group differences are exhibited, rather than on individual principal components. The third innovation concerns the comparison of individual shapes with a relevant control set, where the concept of a normal range is extended to the highly multivariate setting of surface shape. This has particularly strong applications to medical contexts where the assessment of individual patients is very important. All of these ideas are developed and illustrated in the important context of human facial shape, with a strong emphasis on the effective visual communication of effects of interest.

  • Název v anglickém jazyce

    Functional Data Analysis and Visualisation of Three-Dimensional Surface Shape

  • Popis výsledku anglicky

    The advent of high-resolution imaging has made data on surface shape widespread. Methods for the analysis of shape based on landmarks are well established but high-resolution data require a functional approach. The starting point is a systematic and consistent description of each surface shape and a method for creating this is described. Three innovative forms of analysis are then introduced. The first uses surface integration to address issues of registration, principal component analysis and the measurement of asymmetry, all in functional form. Computational issues are handled through discrete approximations to integrals, based in this case on appropriate surface area weighted sums. The second innovation is to focus on sub-spaces where interesting behaviour such as group differences are exhibited, rather than on individual principal components. The third innovation concerns the comparison of individual shapes with a relevant control set, where the concept of a normal range is extended to the highly multivariate setting of surface shape. This has particularly strong applications to medical contexts where the assessment of individual patients is very important. All of these ideas are developed and illustrated in the important context of human facial shape, with a strong emphasis on the effective visual communication of effects of interest.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of the Royal Statistical Society Series C-Applied Statistics

  • ISSN

    0035-9254

  • e-ISSN

    1467-9876

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    691-713

  • Kód UT WoS článku

    000647418500001

  • EID výsledku v databázi Scopus

    2-s2.0-85105171470