Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00558251" target="_blank" >RIV/67985807:_____/22:00558251 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1063/5.0087910" target="_blank" >http://dx.doi.org/10.1063/5.0087910</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0087910" target="_blank" >10.1063/5.0087910</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding

  • Popis výsledku v původním jazyce

    Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey–Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification. Detection of causal relations in a system is the logical first step to accurately describe and study the system. In systems where the individual components produce time series that exhibit oscillating behavior, causality can be assessed through the phase information of the oscillations instead of the amplitude information. In this work, we propose a novel phase-based approach to detect these relations, we investigate if phases are capable of providing better detection of causality, and we identify advantages and hindrances of phase-based causality analysis.

  • Název v anglickém jazyce

    Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding

  • Popis výsledku anglicky

    Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey–Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification. Detection of causal relations in a system is the logical first step to accurately describe and study the system. In systems where the individual components produce time series that exhibit oscillating behavior, causality can be assessed through the phase information of the oscillations instead of the amplitude information. In this work, we propose a novel phase-based approach to detect these relations, we investigate if phases are capable of providing better detection of causality, and we identify advantages and hindrances of phase-based causality analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-14727K" target="_blank" >GF21-14727K: Struktury synchronizace v mnohorozměrných neurálních signálech: strojové učení a predikce účinnosti antidepresiv</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos

  • ISSN

    1054-1500

  • e-ISSN

    1089-7682

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    053111

  • Kód UT WoS článku

    000827843300003

  • EID výsledku v databázi Scopus

    2-s2.0-85129834719