Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00558251" target="_blank" >RIV/67985807:_____/22:00558251 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/5.0087910" target="_blank" >http://dx.doi.org/10.1063/5.0087910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0087910" target="_blank" >10.1063/5.0087910</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding
Popis výsledku v původním jazyce
Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey–Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification. Detection of causal relations in a system is the logical first step to accurately describe and study the system. In systems where the individual components produce time series that exhibit oscillating behavior, causality can be assessed through the phase information of the oscillations instead of the amplitude information. In this work, we propose a novel phase-based approach to detect these relations, we investigate if phases are capable of providing better detection of causality, and we identify advantages and hindrances of phase-based causality analysis.
Název v anglickém jazyce
Phase-Based Causality Analysis with Partial Mutual Information from Mixed Embedding
Popis výsledku anglicky
Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey–Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification. Detection of causal relations in a system is the logical first step to accurately describe and study the system. In systems where the individual components produce time series that exhibit oscillating behavior, causality can be assessed through the phase information of the oscillations instead of the amplitude information. In this work, we propose a novel phase-based approach to detect these relations, we investigate if phases are capable of providing better detection of causality, and we identify advantages and hindrances of phase-based causality analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-14727K" target="_blank" >GF21-14727K: Struktury synchronizace v mnohorozměrných neurálních signálech: strojové učení a predikce účinnosti antidepresiv</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
1089-7682
Svazek periodika
32
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
053111
Kód UT WoS článku
000827843300003
EID výsledku v databázi Scopus
2-s2.0-85129834719