Lead/Lag directionality is not generally equivalent to causality in nonlinear systems: Comparison of phase slope index and conditional mutual information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585428" target="_blank" >RIV/67985807:_____/24:00585428 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.neuroimage.2024.120610" target="_blank" >https://doi.org/10.1016/j.neuroimage.2024.120610</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neuroimage.2024.120610" target="_blank" >10.1016/j.neuroimage.2024.120610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lead/Lag directionality is not generally equivalent to causality in nonlinear systems: Comparison of phase slope index and conditional mutual information
Popis výsledku v původním jazyce
Applications of causal techniques to neural time series have increased extensively over last decades, including a wide and diverse family of methods focusing on electroencephalogram (EEG) analysis. Besides connectivity inferred in defined frequency bands, there is a growing interest in the analysis of cross-frequency interactions, in particular phase and amplitude coupling and directionality. Some studies show contradicting results of coupling directionality from high frequency to low frequency signal components, in spite of generally considered modulation of a high-frequency amplitude by a low-frequency phase. We have compared two widely used methods to estimate the directionality in cross frequency coupling: conditional mutual information (CMI) and phase slope index (PSI). The latter, applied to infer cross-frequency phase–amplitude directionality from animal intracranial recordings, gives opposite results when comparing to CMI. Both metrics were tested in a numerically simulated example of unidirectionally coupled Rössler systems, which helped to find the explanation of the contradictory results: PSI correctly estimates the lead/lag relationship which, however, is not generally equivalent to causality in the sense of directionality of coupling in nonlinear systems, correctly inferred by using CMI with surrogate data testing.
Název v anglickém jazyce
Lead/Lag directionality is not generally equivalent to causality in nonlinear systems: Comparison of phase slope index and conditional mutual information
Popis výsledku anglicky
Applications of causal techniques to neural time series have increased extensively over last decades, including a wide and diverse family of methods focusing on electroencephalogram (EEG) analysis. Besides connectivity inferred in defined frequency bands, there is a growing interest in the analysis of cross-frequency interactions, in particular phase and amplitude coupling and directionality. Some studies show contradicting results of coupling directionality from high frequency to low frequency signal components, in spite of generally considered modulation of a high-frequency amplitude by a low-frequency phase. We have compared two widely used methods to estimate the directionality in cross frequency coupling: conditional mutual information (CMI) and phase slope index (PSI). The latter, applied to infer cross-frequency phase–amplitude directionality from animal intracranial recordings, gives opposite results when comparing to CMI. Both metrics were tested in a numerically simulated example of unidirectionally coupled Rössler systems, which helped to find the explanation of the contradictory results: PSI correctly estimates the lead/lag relationship which, however, is not generally equivalent to causality in the sense of directionality of coupling in nonlinear systems, correctly inferred by using CMI with surrogate data testing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-14727K" target="_blank" >GF21-14727K: Struktury synchronizace v mnohorozměrných neurálních signálech: strojové učení a predikce účinnosti antidepresiv</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neuroimage
ISSN
1053-8119
e-ISSN
1095-9572
Svazek periodika
292
Číslo periodika v rámci svazku
15 April 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
120610
Kód UT WoS článku
001231625000001
EID výsledku v databázi Scopus
2-s2.0-85190759737