neurolib: A Simulation Framework for Whole-Brain Neural Mass Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00547193" target="_blank" >RIV/67985807:_____/23:00547193 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s12559-021-09931-9" target="_blank" >http://dx.doi.org/10.1007/s12559-021-09931-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12559-021-09931-9" target="_blank" >10.1007/s12559-021-09931-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
neurolib: A Simulation Framework for Whole-Brain Neural Mass Modeling
Popis výsledku v původním jazyce
neurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain. neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of whole-brain models.
Název v anglickém jazyce
neurolib: A Simulation Framework for Whole-Brain Neural Mass Modeling
Popis výsledku anglicky
neurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain. neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of whole-brain models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_074%2F0016209" target="_blank" >EF19_074/0016209: Modelování spícího mozku: směrem k neurálnímu masovému modelu spánkových rytmů a jejich interakcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cognitive Computation
ISSN
1866-9956
e-ISSN
1866-9964
Svazek periodika
15
Číslo periodika v rámci svazku
July 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
1132-1152
Kód UT WoS článku
000706010400001
EID výsledku v databázi Scopus
2-s2.0-85116942431