Sandwiching Biregular Random Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00558488" target="_blank" >RIV/67985807:_____/23:00558488 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10476383
Výsledek na webu
<a href="https://doi.org/10.1017/S0963548322000049" target="_blank" >https://doi.org/10.1017/S0963548322000049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548322000049" target="_blank" >10.1017/S0963548322000049</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sandwiching Biregular Random Graphs
Popis výsledku v původním jazyce
Let G(n1,n2,m) be a uniformly random m-edge subgraph of the complete bipartite graph Kn1,n2 with bipartition (V1,V2) , where ni=|Vi| , i=1,2 . Given a real number p∈[0,1] such that d1:=pn2 and d2:=pn1 are integers, let R(n1,n2,p) be a random subgraph of Kn1,n2 with every vertex v∈Vi of degree di , i=1,2 . In this paper we determine sufficient conditions on n1,n2,p and m under which one can embed G(n1,n2,m) into R(n1,n2,p) and vice versa with probability tending to 1. In particular, in the balanced case n1=n2 , we show that if p≫logn/n and 1−p≫(logn/n)1/4 , then for some m∼pn2 , asymptotically almost surely one can embed G(n1,n2,m) into R(n1,n2,p) , while for p≫(log3n/n)1/4 and 1−p≫logn/n the opposite embedding holds. As an extension, we confirm the Kim–Vu Sandwich Conjecture for degrees growing faster than (nlogn)3/4 .
Název v anglickém jazyce
Sandwiching Biregular Random Graphs
Popis výsledku anglicky
Let G(n1,n2,m) be a uniformly random m-edge subgraph of the complete bipartite graph Kn1,n2 with bipartition (V1,V2) , where ni=|Vi| , i=1,2 . Given a real number p∈[0,1] such that d1:=pn2 and d2:=pn1 are integers, let R(n1,n2,p) be a random subgraph of Kn1,n2 with every vertex v∈Vi of degree di , i=1,2 . In this paper we determine sufficient conditions on n1,n2,p and m under which one can embed G(n1,n2,m) into R(n1,n2,p) and vice versa with probability tending to 1. In particular, in the balanced case n1=n2 , we show that if p≫logn/n and 1−p≫(logn/n)1/4 , then for some m∼pn2 , asymptotically almost surely one can embed G(n1,n2,m) into R(n1,n2,p) , while for p≫(log3n/n)1/4 and 1−p≫logn/n the opposite embedding holds. As an extension, we confirm the Kim–Vu Sandwich Conjecture for degrees growing faster than (nlogn)3/4 .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Combinatorics Probability & Computing
ISSN
0963-5483
e-ISSN
1469-2163
Svazek periodika
32
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
44
Strana od-do
1-44
Kód UT WoS článku
000806622900001
EID výsledku v databázi Scopus
—