On Analyzing Complex Data Within Clinical Decision Support Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00565534" target="_blank" >RIV/67985807:_____/23:00565534 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.4018/978-1-6684-5092-5.ch004" target="_blank" >https://dx.doi.org/10.4018/978-1-6684-5092-5.ch004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-6684-5092-5.ch004" target="_blank" >10.4018/978-1-6684-5092-5.ch004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Analyzing Complex Data Within Clinical Decision Support Systems
Popis výsledku v původním jazyce
Clinical decision support systems (CDSSs) represent digital health tools applicable to important tasks within the clinical decision-making process. Training data-driven CDSSs requires extracting medical knowledge from the available information by means of machine learning. The analysis of the complex (possibly big or high-dimensional) training data allows knowledge relevant to be obtained for clinical decisions related to the diagnosis, therapy, or prognosis. This chapter is devoted to training CDSSs by machine learning based on complex data. Remarkable recent examples of CDSSs including those based on deep learning are recalled here. Principles, challenges, or ethical aspects of machine learning are discussed here in the context of CDSSs. Attention is paid to dimensionality reduction, deep learning methods for big data, or explainability of the data analysis methods. Data analysis issues are discussed also for two particular CDSSs on which the author of this chapter participated.
Název v anglickém jazyce
On Analyzing Complex Data Within Clinical Decision Support Systems
Popis výsledku anglicky
Clinical decision support systems (CDSSs) represent digital health tools applicable to important tasks within the clinical decision-making process. Training data-driven CDSSs requires extracting medical knowledge from the available information by means of machine learning. The analysis of the complex (possibly big or high-dimensional) training data allows knowledge relevant to be obtained for clinical decisions related to the diagnosis, therapy, or prognosis. This chapter is devoted to training CDSSs by machine learning based on complex data. Remarkable recent examples of CDSSs including those based on deep learning are recalled here. Principles, challenges, or ethical aspects of machine learning are discussed here in the context of CDSSs. Attention is paid to dimensionality reduction, deep learning methods for big data, or explainability of the data analysis methods. Data analysis issues are discussed also for two particular CDSSs on which the author of this chapter participated.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NU21-08-00432" target="_blank" >NU21-08-00432: Predikce funkčního vyústění schizofrenie z multimodálních neurozobrazovacích a klinických dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Diverse Perspectives and State-of-the-Art Approaches to the Utilization of Data-Driven Clinical Decision Support Systems
ISBN
9781668450925
Počet stran výsledku
21
Strana od-do
84-104
Počet stran knihy
380
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—