Robust Dimensionality Reduction: A Resistant Search for the Relevant Information in Complex Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00565535" target="_blank" >RIV/67985807:_____/23:00565535 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.4018/978-1-6684-5092-5.ch004" target="_blank" >https://dx.doi.org/10.4018/978-1-6684-5092-5.ch004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-6684-5264-6.ch009" target="_blank" >10.4018/978-1-6684-5264-6.ch009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Dimensionality Reduction: A Resistant Search for the Relevant Information in Complex Data
Popis výsledku v původním jazyce
With the increasing availability of massive data in various fields of applications such as engineering, economics, or biomedicine, there appears an urgent need for new reliable tools for obtaining relevant knowledge from such data, which allow one to find and interpret the most relevant features (variables). Such interpretation is however infeasible for the habitually used methods of machine learning, which can be characterized as black boxes. This chapter is devoted to variable selection methods for finding the most relevant variables for the given task. After explaining general principles, attention is paid to robust approaches, which are suitable for data contaminated by outlying values (outliers). Three main approaches to variable selection (prior, intrinsic, and posterior) are explained, and their recently proposed examples are illustrated on applications related to credit risk management and molecular genetics. These examples reveal recent robust approaches to data analysis to be able to outperform non-robust tools.
Název v anglickém jazyce
Robust Dimensionality Reduction: A Resistant Search for the Relevant Information in Complex Data
Popis výsledku anglicky
With the increasing availability of massive data in various fields of applications such as engineering, economics, or biomedicine, there appears an urgent need for new reliable tools for obtaining relevant knowledge from such data, which allow one to find and interpret the most relevant features (variables). Such interpretation is however infeasible for the habitually used methods of machine learning, which can be characterized as black boxes. This chapter is devoted to variable selection methods for finding the most relevant variables for the given task. After explaining general principles, attention is paid to robust approaches, which are suitable for data contaminated by outlying values (outliers). Three main approaches to variable selection (prior, intrinsic, and posterior) are explained, and their recently proposed examples are illustrated on applications related to credit risk management and molecular genetics. These examples reveal recent robust approaches to data analysis to be able to outperform non-robust tools.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Aproximativní neurovýpočty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Convergence of Big Data Technologies and Computational Intelligent Techniques
ISBN
9781668452646
Počet stran výsledku
25
Strana od-do
186-210
Počet stran knihy
233
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—