One-variable fragments of first-order logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585222" target="_blank" >RIV/67985807:_____/24:00585222 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/bsl.2024.22" target="_blank" >https://doi.org/10.1017/bsl.2024.22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/bsl.2024.22" target="_blank" >10.1017/bsl.2024.22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
One-variable fragments of first-order logics
Popis výsledku v původním jazyce
The one-variable fragment of a first-order logic may be viewed as an “S5-like” modal logic, where the universal and existential quantifiers are replaced by box and diamond modalities, respectively. Axiomatizations of these modal logics have been obtained for special cases — notably, the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and first-order intuitionistic logic, respectively — but a general approach, extending beyond first-order intermediate logics, has been lacking. To this end, a sufficient criterion is given in this paper for the one-variable fragment of a semantically-defined first-order logic — spanning families of intermediate, substructural, many-valued, and modal logics — to admit a certain natural axiomatization. More precisely, an axiomatization is obtained for the one-variable fragment of any first-order logic based on a variety of algebraic structures with a lattice reduct that has thensuperamalgamation property, using a generalized version of a functional representation theorem for monadic Heyting algebras due to Bezhanishvili and Harding. An alternative proof-theoretic strategy for obtaining such axiomatization results is also developed for first-order substructural logics that have a cut-free sequent calculus and admit a certain interpolation property
Název v anglickém jazyce
One-variable fragments of first-order logics
Popis výsledku anglicky
The one-variable fragment of a first-order logic may be viewed as an “S5-like” modal logic, where the universal and existential quantifiers are replaced by box and diamond modalities, respectively. Axiomatizations of these modal logics have been obtained for special cases — notably, the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and first-order intuitionistic logic, respectively — but a general approach, extending beyond first-order intermediate logics, has been lacking. To this end, a sufficient criterion is given in this paper for the one-variable fragment of a semantically-defined first-order logic — spanning families of intermediate, substructural, many-valued, and modal logics — to admit a certain natural axiomatization. More precisely, an axiomatization is obtained for the one-variable fragment of any first-order logic based on a variety of algebraic structures with a lattice reduct that has thensuperamalgamation property, using a generalized version of a functional representation theorem for monadic Heyting algebras due to Bezhanishvili and Harding. An alternative proof-theoretic strategy for obtaining such axiomatization results is also developed for first-order substructural logics that have a cut-free sequent calculus and admit a certain interpolation property
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01137S" target="_blank" >GA22-01137S: Metamatematika substrukturálních modálních logik</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of Symbolic Logic
ISSN
1079-8986
e-ISSN
1943-5894
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
253-278
Kód UT WoS článku
001358025000006
EID výsledku v databázi Scopus
2-s2.0-85189700270