Semiconic idempotent logic I: Structure and local deduction theorems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00586504" target="_blank" >RIV/67985807:_____/24:00586504 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apal.2024.103443" target="_blank" >https://doi.org/10.1016/j.apal.2024.103443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2024.103443" target="_blank" >10.1016/j.apal.2024.103443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semiconic idempotent logic I: Structure and local deduction theorems
Popis výsledku v původním jazyce
Semiconic idempotent logic is a common generalization of intuitionistic logic, relevance logic with mingle, and semilinear idempotent logic. It is an algebraizable logic and it admits a cut-free hypersequent calculus. We give a structural decomposition of its characteristic algebraic semantics, conic idempotent residuated lattices, showing that each of these is an ordinal sum of simpler partially ordered structures. This ordinal sum is indexed by a totally ordered residuated lattice, which serves as its skeleton and is both a subalgebra and nuclear image. We equationally characterize the totally ordered residuated lattices appearing as such skeletons. Further, we describe both congruence and subalgebra generation in conic idempotent residuated lattices, proving that every variety generated by these enjoys the congruence extension property. In particular, this holds for semilinear idempotent residuated lattices. Based on this analysis, we obtain a local deduction theorem for semiconic idempotent logic, which also specializes to semilinear idempotent logic.
Název v anglickém jazyce
Semiconic idempotent logic I: Structure and local deduction theorems
Popis výsledku anglicky
Semiconic idempotent logic is a common generalization of intuitionistic logic, relevance logic with mingle, and semilinear idempotent logic. It is an algebraizable logic and it admits a cut-free hypersequent calculus. We give a structural decomposition of its characteristic algebraic semantics, conic idempotent residuated lattices, showing that each of these is an ordinal sum of simpler partially ordered structures. This ordinal sum is indexed by a totally ordered residuated lattice, which serves as its skeleton and is both a subalgebra and nuclear image. We equationally characterize the totally ordered residuated lattices appearing as such skeletons. Further, we describe both congruence and subalgebra generation in conic idempotent residuated lattices, proving that every variety generated by these enjoys the congruence extension property. In particular, this holds for semilinear idempotent residuated lattices. Based on this analysis, we obtain a local deduction theorem for semiconic idempotent logic, which also specializes to semilinear idempotent logic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
1873-2461
Svazek periodika
175
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
30
Strana od-do
103443
Kód UT WoS článku
001225971600001
EID výsledku v databázi Scopus
2-s2.0-85189447897