Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00602952" target="_blank" >RIV/67985807:_____/24:00602952 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.jmlr.org/papers/v25/23-1066.html" target="_blank" >https://www.jmlr.org/papers/v25/23-1066.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length
Popis výsledku v původním jazyce
Multivariate Hawkes processes (MHPs) are versatile probabilistic tools used to model various real -life phenomena: earthquakes, operations on stock markets, neuronal activity, virus propagation and many others. In this paper, we focus on MHPs with exponential decay kernels and estimate connectivity graphs, which represent the Granger causal relations between their components. We approach this inference problem by proposing an optimization criterion and model selection algorithm based on the minimum message length (MML) principle. MML compares Granger causal models using the Occam's razor principle in the following way: even when models have a comparable goodness -of -fit to the observed data, the one generating the most concise explanation of the data is preferred. While most of the state -of -art methods using lasso -type penalization tend to overfitting in scenarios with short time horizons, the proposed MML-based method achieves high F1 scores in these settings. We conduct a numerical study comparing the proposed algorithm to other related classical and state -of -art methods, where we achieve the highest F1 scores in specific sparse graph settings. We illustrate the proposed method also on G7 sovereign bond data and obtain causal connections, which are in agreement with the expert knowledge available in the literature.
Název v anglickém jazyce
Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length
Popis výsledku anglicky
Multivariate Hawkes processes (MHPs) are versatile probabilistic tools used to model various real -life phenomena: earthquakes, operations on stock markets, neuronal activity, virus propagation and many others. In this paper, we focus on MHPs with exponential decay kernels and estimate connectivity graphs, which represent the Granger causal relations between their components. We approach this inference problem by proposing an optimization criterion and model selection algorithm based on the minimum message length (MML) principle. MML compares Granger causal models using the Occam's razor principle in the following way: even when models have a comparable goodness -of -fit to the observed data, the one generating the most concise explanation of the data is preferred. While most of the state -of -art methods using lasso -type penalization tend to overfitting in scenarios with short time horizons, the proposed MML-based method achieves high F1 scores in these settings. We conduct a numerical study comparing the proposed algorithm to other related classical and state -of -art methods, where we achieve the highest F1 scores in specific sparse graph settings. We illustrate the proposed method also on G7 sovereign bond data and obtain causal connections, which are in agreement with the expert knowledge available in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Machine Learning Research
ISSN
1532-4435
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
133
Kód UT WoS článku
001230544600001
EID výsledku v databázi Scopus
—