VO-supported Active Deep Learning as a New Methodology for the Discovery of Objects of Interest in Big Surveys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F20%3A00562032" target="_blank" >RIV/67985815:_____/20:00562032 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aspbooks.org/publications/527/163.pdf" target="_blank" >http://www.aspbooks.org/publications/527/163.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VO-supported Active Deep Learning as a New Methodology for the Discovery of Objects of Interest in Big Surveys
Popis výsledku v původním jazyce
Deep neural networks have been proved a very successful method of supervised learning in several research fields. To perform well, they require a massive amount of labelled data, which is challenging to get from most astronomical surveys. To overcome this limitation, we have developed a novel active deep learning method. It is based on an iterative training of a deep network followed by relabelling of a small sample according to a qualified decision of an oracle (usually a human expert). To maximise the scientific return, the oracle brings to the decision the domain knowledge not limited only to the data learned by the network. By combining some external resources to extract the key information by an expert in a field, much more relevant labels are assigned. Setup of an active deep learning platform thus requires incorporation of a Virtual Observatory (VO) client infrastructure as an integral part of a machine learning experiment, which is quite different from current practices. As proof of concept, we demonstrate the efficiency of our method for discovery of new emission-line stars in a multimillion spectra archive of the LAMOST DR2 survey.
Název v anglickém jazyce
VO-supported Active Deep Learning as a New Methodology for the Discovery of Objects of Interest in Big Surveys
Popis výsledku anglicky
Deep neural networks have been proved a very successful method of supervised learning in several research fields. To perform well, they require a massive amount of labelled data, which is challenging to get from most astronomical surveys. To overcome this limitation, we have developed a novel active deep learning method. It is based on an iterative training of a deep network followed by relabelling of a small sample according to a qualified decision of an oracle (usually a human expert). To maximise the scientific return, the oracle brings to the decision the domain knowledge not limited only to the data learned by the network. By combining some external resources to extract the key information by an expert in a field, much more relevant labels are assigned. Setup of an active deep learning platform thus requires incorporation of a Virtual Observatory (VO) client infrastructure as an integral part of a machine learning experiment, which is quite different from current practices. As proof of concept, we demonstrate the efficiency of our method for discovery of new emission-line stars in a multimillion spectra archive of the LAMOST DR2 survey.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Astronomical Data Analysis Software and System XXIX
ISBN
978-1-58381-942-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
163-166
Název nakladatele
Astronomical Society of the Pacific
Místo vydání
San Francisco
Místo konání akce
Groningen
Datum konání akce
6. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—