Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prototype of interactive visualisation tool for Bayesian active deep learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00617590" target="_blank" >RIV/67985815:_____/24:00617590 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/23:00362332

  • Výsledek na webu

    <a href="https://www.aspbooks.org/publications/535/091.pdf" target="_blank" >https://www.aspbooks.org/publications/535/091.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prototype of interactive visualisation tool for Bayesian active deep learning

  • Popis výsledku v původním jazyce

    In the era of big data in astronomy, we need to develop methods to analyse the data. One such method is Bayesian active deep learning (synergy of Bayesian convolutional neural networks and active learning). To improve the method's performance, we have developed a prototype of an interactive visualisation tool for a selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for labelling by a human expert. The tool takes as input a sample of data with the highest predictive uncertainty. These data are projected to 2-D with a dimensionality reduction technique. We visualise the projected data in an interactive scatter plot and allow a human expert to label a selected subsample of data. With this tool, she or he can select a correct subsample with all the previously mentioned characteristics. This should lower the total amount of data labelled because the Bayesian model's performance will improve faster than when the data are selected automatically.

  • Název v anglickém jazyce

    Prototype of interactive visualisation tool for Bayesian active deep learning

  • Popis výsledku anglicky

    In the era of big data in astronomy, we need to develop methods to analyse the data. One such method is Bayesian active deep learning (synergy of Bayesian convolutional neural networks and active learning). To improve the method's performance, we have developed a prototype of an interactive visualisation tool for a selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for labelling by a human expert. The tool takes as input a sample of data with the highest predictive uncertainty. These data are projected to 2-D with a dimensionality reduction technique. We visualise the projected data in an interactive scatter plot and allow a human expert to label a selected subsample of data. With this tool, she or he can select a correct subsample with all the previously mentioned characteristics. This should lower the total amount of data labelled because the Bayesian model's performance will improve faster than when the data are selected automatically.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Astronomical Data Analysis Software and Systems XXXI

  • ISBN

    978-1-58381-957-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    91-94

  • Název nakladatele

    Astronomical Society of the Pacific

  • Místo vydání

    San Francisco

  • Místo konání akce

    Kapské Město

  • Datum konání akce

    24. 10. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku