Semi-Automated Sleep EEG Scoring with Active Learning and HMM-Based Deletion of Ambiguous Instances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337775" target="_blank" >RIV/68407700:21730/19:00337775 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/proceedings2019031046" target="_blank" >https://doi.org/10.3390/proceedings2019031046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/proceedings2019031046" target="_blank" >10.3390/proceedings2019031046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-Automated Sleep EEG Scoring with Active Learning and HMM-Based Deletion of Ambiguous Instances
Popis výsledku v původním jazyce
Sleep scoring is an important tool for physicians. Assigning of segments of long biomedical signal into sleep stages is, however, a very time consuming, tedious and expensive task which is performed by an expert. Automatic sleep scoring is not well accepted in clinical practice because of low interactivity and unacceptable error, which is often caused by inter-patient variability. This is solved by proposing a semi-automatic approach, where parts of the signal are selected for manual labeling by active learning and the resulting classifier is used for automatic labeling of the remaining signal. The active learning is disturbed by noisy ambiguous data instances caused by continuous character of the sleep stage transitions and a removal of such transitional instances from the training set prior to active learning can improve the efficiency of the method. This paper proposes to use the hidden Markov model for the detection of the transitional instances. It shows experimentally on 35 sleep EEG recordings that such a method significantly improves the semi-automatic method. A complete methodology for semi-automatic sleep scoring is proposed and evaluated, which can be better accepted as a decision support tool for sleep scoring experts.
Název v anglickém jazyce
Semi-Automated Sleep EEG Scoring with Active Learning and HMM-Based Deletion of Ambiguous Instances
Popis výsledku anglicky
Sleep scoring is an important tool for physicians. Assigning of segments of long biomedical signal into sleep stages is, however, a very time consuming, tedious and expensive task which is performed by an expert. Automatic sleep scoring is not well accepted in clinical practice because of low interactivity and unacceptable error, which is often caused by inter-patient variability. This is solved by proposing a semi-automatic approach, where parts of the signal are selected for manual labeling by active learning and the resulting classifier is used for automatic labeling of the remaining signal. The active learning is disturbed by noisy ambiguous data instances caused by continuous character of the sleep stage transitions and a removal of such transitional instances from the training set prior to active learning can improve the efficiency of the method. This paper proposes to use the hidden Markov model for the detection of the transitional instances. It shows experimentally on 35 sleep EEG recordings that such a method significantly improves the semi-automatic method. A complete methodology for semi-automatic sleep scoring is proposed and evaluated, which can be better accepted as a decision support tool for sleep scoring experts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 13th International Conference on Ubiquitous Computing and Ambient Intelligence UCAmI 2019
ISBN
—
ISSN
2504-3900
e-ISSN
2504-3900
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Multidisciplinary Digital Publishing Institute (MDPI AG)
Místo vydání
Basel
Místo konání akce
Toledo
Datum konání akce
2. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—