Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328067" target="_blank" >RIV/68407700:21230/18:00328067 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/18:00328067 RIV/68407700:21730/18:00328067
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8621339" target="_blank" >https://ieeexplore.ieee.org/document/8621339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM.2018.8621339" target="_blank" >10.1109/BIBM.2018.8621339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments
Popis výsledku v původním jazyce
Semiautomatic sleep staging system based on EEG classification is focused in the paper. Such an expert-in-the-loop system interacts with the annotating expert by suggesting him EEG segments that should be annotated. After a sufficient number of labeled segments is reached, a pattern classification model is trained and used for automatic annotation of the rest of the signal. It is shown that this can save 85% of the labeling effort and consequently improve the annotation quality due to the prevention of errors caused by expert’s fatigue. The selection of the data for labeling is based on confidence based active learning approach. It is shown that such a strategy is statistically significantly better in terms of mean class error than baseline random sampling strategy. Moreover, it is argued that transitional instances that correspond to transitions between sleep stages are often erroneously labeled and their elimination can improve especially the active learning process. This hypothesis is examined and surprisingly such elimination significantly improved the random sampling strategy which became comparable to the active learning without removal of transitions. Although the active learning strategy with transitions removal performed better in terms of mean, there were not sufficient data that would prove this statistically.
Název v anglickém jazyce
Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments
Popis výsledku anglicky
Semiautomatic sleep staging system based on EEG classification is focused in the paper. Such an expert-in-the-loop system interacts with the annotating expert by suggesting him EEG segments that should be annotated. After a sufficient number of labeled segments is reached, a pattern classification model is trained and used for automatic annotation of the rest of the signal. It is shown that this can save 85% of the labeling effort and consequently improve the annotation quality due to the prevention of errors caused by expert’s fatigue. The selection of the data for labeling is based on confidence based active learning approach. It is shown that such a strategy is statistically significantly better in terms of mean class error than baseline random sampling strategy. Moreover, it is argued that transitional instances that correspond to transitions between sleep stages are often erroneously labeled and their elimination can improve especially the active learning process. This hypothesis is examined and surprisingly such elimination significantly improved the random sampling strategy which became comparable to the active learning without removal of transitions. Although the active learning strategy with transitions removal performed better in terms of mean, there were not sufficient data that would prove this statistically.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Proceedings
ISBN
978-1-5386-5488-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
2621-2627
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Madrid
Datum konání akce
3. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000458654000449