Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328067" target="_blank" >RIV/68407700:21230/18:00328067 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/18:00328067 RIV/68407700:21730/18:00328067

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8621339" target="_blank" >https://ieeexplore.ieee.org/document/8621339</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM.2018.8621339" target="_blank" >10.1109/BIBM.2018.8621339</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments

  • Popis výsledku v původním jazyce

    Semiautomatic sleep staging system based on EEG classification is focused in the paper. Such an expert-in-the-loop system interacts with the annotating expert by suggesting him EEG segments that should be annotated. After a sufficient number of labeled segments is reached, a pattern classification model is trained and used for automatic annotation of the rest of the signal. It is shown that this can save 85% of the labeling effort and consequently improve the annotation quality due to the prevention of errors caused by expert’s fatigue. The selection of the data for labeling is based on confidence based active learning approach. It is shown that such a strategy is statistically significantly better in terms of mean class error than baseline random sampling strategy. Moreover, it is argued that transitional instances that correspond to transitions between sleep stages are often erroneously labeled and their elimination can improve especially the active learning process. This hypothesis is examined and surprisingly such elimination significantly improved the random sampling strategy which became comparable to the active learning without removal of transitions. Although the active learning strategy with transitions removal performed better in terms of mean, there were not sufficient data that would prove this statistically.

  • Název v anglickém jazyce

    Active Learning for Semiautomatic Sleep Staging and Transitional EEG Segments

  • Popis výsledku anglicky

    Semiautomatic sleep staging system based on EEG classification is focused in the paper. Such an expert-in-the-loop system interacts with the annotating expert by suggesting him EEG segments that should be annotated. After a sufficient number of labeled segments is reached, a pattern classification model is trained and used for automatic annotation of the rest of the signal. It is shown that this can save 85% of the labeling effort and consequently improve the annotation quality due to the prevention of errors caused by expert’s fatigue. The selection of the data for labeling is based on confidence based active learning approach. It is shown that such a strategy is statistically significantly better in terms of mean class error than baseline random sampling strategy. Moreover, it is argued that transitional instances that correspond to transitions between sleep stages are often erroneously labeled and their elimination can improve especially the active learning process. This hypothesis is examined and surprisingly such elimination significantly improved the random sampling strategy which became comparable to the active learning without removal of transitions. Although the active learning strategy with transitions removal performed better in terms of mean, there were not sufficient data that would prove this statistically.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Proceedings

  • ISBN

    978-1-5386-5488-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    2621-2627

  • Název nakladatele

    IEEE

  • Místo vydání

  • Místo konání akce

    Madrid

  • Datum konání akce

    3. 12. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000458654000449