HiSS-Cube: A scalable framework for Hierarchical Semi-Sparse Cubes preserving uncertainties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00548649" target="_blank" >RIV/67985815:_____/21:00548649 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/21:00357098
Výsledek na webu
<a href="https://doi.org/10.1016/j.ascom.2021.100463" target="_blank" >https://doi.org/10.1016/j.ascom.2021.100463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ascom.2021.100463" target="_blank" >10.1016/j.ascom.2021.100463</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HiSS-Cube: A scalable framework for Hierarchical Semi-Sparse Cubes preserving uncertainties
Popis výsledku v původním jazyce
In this study, we developed a new software infrastructure called Hierarchical Semi-Sparse Cube (HiSS-Cube) based on Hierarchical Data Format version 5. HiSS-Cube enables visualization and machine learning using combined heterogeneous data and it was designed to be scalable for big data. HiSS-Cube allows data from multiple domains (imaging, spectral, and timeseries data) to be combined and the construction of a multi-resolution semi-sparse data cube that preserves the uncertainties of scientific measurement at all resolutions. The functionality of HiSSCube was verified based on a subset of the Sloan Digital Sky Survey Stripe 82 survey. We compared the times and volumes for visualizations and machine learning data exported to HiSS-Cube and the original format (FITS). Using these data, we demonstrated that HiSS-Cube is faster by several orders of magnitude. HiSS-Cube supports export to the VOTable format and it is compatible with common Virtual Observatory tools. The source code for our prototype HiSS-Cube is available from GitHub and the data are available from Zenodo.
Název v anglickém jazyce
HiSS-Cube: A scalable framework for Hierarchical Semi-Sparse Cubes preserving uncertainties
Popis výsledku anglicky
In this study, we developed a new software infrastructure called Hierarchical Semi-Sparse Cube (HiSS-Cube) based on Hierarchical Data Format version 5. HiSS-Cube enables visualization and machine learning using combined heterogeneous data and it was designed to be scalable for big data. HiSS-Cube allows data from multiple domains (imaging, spectral, and timeseries data) to be combined and the construction of a multi-resolution semi-sparse data cube that preserves the uncertainties of scientific measurement at all resolutions. The functionality of HiSSCube was verified based on a subset of the Sloan Digital Sky Survey Stripe 82 survey. We compared the times and volumes for visualizations and machine learning data exported to HiSS-Cube and the original format (FITS). Using these data, we demonstrated that HiSS-Cube is faster by several orders of magnitude. HiSS-Cube supports export to the VOTable format and it is compatible with common Virtual Observatory tools. The source code for our prototype HiSS-Cube is available from GitHub and the data are available from Zenodo.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy and Computing
ISSN
2213-1337
e-ISSN
2213-1345
Svazek periodika
36
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
100463
Kód UT WoS článku
000691531100017
EID výsledku v databázi Scopus
2-s2.0-85106464689