Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hierarchical Semi-Sparse Cubes-Parallel Framework for Storing Multi-Modal Big Data in HDF5

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00581668" target="_blank" >RIV/67985815:_____/23:00581668 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0349775" target="_blank" >https://hdl.handle.net/11104/0349775</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3323897" target="_blank" >10.1109/ACCESS.2023.3323897</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hierarchical Semi-Sparse Cubes-Parallel Framework for Storing Multi-Modal Big Data in HDF5

  • Popis výsledku v původním jazyce

    In this article, we present a revised version of the Hierarchical Semi-Sparse Cube (HiSS-Cube) framework. It aims to provide highly parallel processing of combined multi-modal multi-dimensional big data. The main contributions of this study are as follows: 1) Highly parallel construction of a database built on top of the HDF5 framework. This database supports parallel queries 2) design of a database index on top of HDF5 that can be easily constructed in parallel 3) support of efficient multi-modal big data combinations. We tested the scalability and efficiency on big astronomical spectroscopic and photometric data obtained from the Sloan Digital Sky Survey. The performance of HiSS-Cube is bounded by the I/O bandwidth and I/O operations per second of the underlying parallel file system, and it scales linearly with the number of I/O nodes.

  • Název v anglickém jazyce

    Hierarchical Semi-Sparse Cubes-Parallel Framework for Storing Multi-Modal Big Data in HDF5

  • Popis výsledku anglicky

    In this article, we present a revised version of the Hierarchical Semi-Sparse Cube (HiSS-Cube) framework. It aims to provide highly parallel processing of combined multi-modal multi-dimensional big data. The main contributions of this study are as follows: 1) Highly parallel construction of a database built on top of the HDF5 framework. This database supports parallel queries 2) design of a database index on top of HDF5 that can be easily constructed in parallel 3) support of efficient multi-modal big data combinations. We tested the scalability and efficiency on big astronomical spectroscopic and photometric data obtained from the Sloan Digital Sky Survey. The performance of HiSS-Cube is bounded by the I/O bandwidth and I/O operations per second of the underlying parallel file system, and it scales linearly with the number of I/O nodes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    119876-119897

  • Kód UT WoS článku

    001100997000001

  • EID výsledku v databázi Scopus

    2-s2.0-85174830822