Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F21%3A00562271" target="_blank" >RIV/67985815:_____/21:00562271 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-15-4702-7_42-1" target="_blank" >http://dx.doi.org/10.1007/978-981-15-4702-7_42-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-15-4702-7_42-1" target="_blank" >10.1007/978-981-15-4702-7_42-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves

  • Popis výsledku v původním jazyce

    The largest part of any gravitational-wave inspiral of a compact binary can be understood as a slow, adiabatic drift between the trajectories of a certain referential conservative system. In many contexts, the phase space of this conservative system is smooth and there are no topological transitions in the phase space, meaning that there are no sudden qualitative changes in the character of the orbital motion during the inspiral. However, in this chapter we discuss the cases where this assumption fails and non-linear and/or non-smooth transitions come into play. In integrable conservative systems under perturbation, topological transitions suddenly appear at resonances, and we sketch how to implement the passage through such regions in an inspiral model. Even though many of the developments of this chapter apply to general inspirals, we focus on a particular scenario known as the Extreme mass ratio inspiral (EMRI). An EMRI consists of a compact stellar-mass object inspiralling into a supermassive black hole. At leading order, the referential conservative system is simply geodesic motion in the field of the supermassive black hole and the rate of the drift is given by radiation reaction. In Einstein gravity the supermassive black hole field is the Kerr space-time in which the geodesic motion is integrable. However, the equations of motion can be perturbed in various ways so that prolonged resonances and chaos appear in phase space as well as the inspiral, which we demonstrate in simple physically motivated examples.

  • Název v anglickém jazyce

    Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves

  • Popis výsledku anglicky

    The largest part of any gravitational-wave inspiral of a compact binary can be understood as a slow, adiabatic drift between the trajectories of a certain referential conservative system. In many contexts, the phase space of this conservative system is smooth and there are no topological transitions in the phase space, meaning that there are no sudden qualitative changes in the character of the orbital motion during the inspiral. However, in this chapter we discuss the cases where this assumption fails and non-linear and/or non-smooth transitions come into play. In integrable conservative systems under perturbation, topological transitions suddenly appear at resonances, and we sketch how to implement the passage through such regions in an inspiral model. Even though many of the developments of this chapter apply to general inspirals, we focus on a particular scenario known as the Extreme mass ratio inspiral (EMRI). An EMRI consists of a compact stellar-mass object inspiralling into a supermassive black hole. At leading order, the referential conservative system is simply geodesic motion in the field of the supermassive black hole and the rate of the drift is given by radiation reaction. In Einstein gravity the supermassive black hole field is the Kerr space-time in which the geodesic motion is integrable. However, the equations of motion can be perturbed in various ways so that prolonged resonances and chaos appear in phase space as well as the inspiral, which we demonstrate in simple physically motivated examples.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Handbook of Gravitational Wave Astronomy

  • ISBN

    978-981-15-4702-7

  • Počet stran výsledku

    44

  • Strana od-do

    1-44

  • Počet stran knihy

    990

  • Název nakladatele

    Springer

  • Místo vydání

    Singapore

  • Kód UT WoS kapitoly