Action-angle formalism for extreme mass ratio inspirals in Kerr spacetime
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F23%3A00577751" target="_blank" >RIV/67985815:_____/23:00577751 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10476915
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.108.044004" target="_blank" >https://doi.org/10.1103/PhysRevD.108.044004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.044004" target="_blank" >10.1103/PhysRevD.108.044004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Action-angle formalism for extreme mass ratio inspirals in Kerr spacetime
Popis výsledku v původním jazyce
We introduce an action-angle formalism for bounded geodesic motion in Kerr black hole spacetime using canonical perturbation theory. Namely, we employ a Lie series technique to produce a series of canonical transformations on a Hamiltonian function describing geodesic motion in Kerr background written in Boyer-Lindquist coordinates to a Hamiltonian system written in action-angle variables. This technique allows us to produce a closed-form invertible relation between the Boyer-Lindquist variables and the action-angle ones, while it generates in analytical closed form all the characteristic functions of the system as well. The expressed in the action-angle variable Hamiltonian system is employed to model an extreme mass ratio inspiral (EMRI), i.e., a binary system where a stellar compact object inspirals into a supermassive black hole due to gravitational radiation reaction. We consider the adiabatic evolution of an EMRI, for which the energy and angular momentum fluxes are computed by solving the Teukolsky equation in the frequency domain. To achieve this a new Teukolsky equation solver code was developed.
Název v anglickém jazyce
Action-angle formalism for extreme mass ratio inspirals in Kerr spacetime
Popis výsledku anglicky
We introduce an action-angle formalism for bounded geodesic motion in Kerr black hole spacetime using canonical perturbation theory. Namely, we employ a Lie series technique to produce a series of canonical transformations on a Hamiltonian function describing geodesic motion in Kerr background written in Boyer-Lindquist coordinates to a Hamiltonian system written in action-angle variables. This technique allows us to produce a closed-form invertible relation between the Boyer-Lindquist variables and the action-angle ones, while it generates in analytical closed form all the characteristic functions of the system as well. The expressed in the action-angle variable Hamiltonian system is employed to model an extreme mass ratio inspiral (EMRI), i.e., a binary system where a stellar compact object inspirals into a supermassive black hole due to gravitational radiation reaction. We consider the adiabatic evolution of an EMRI, for which the energy and angular momentum fluxes are computed by solving the Teukolsky equation in the frequency domain. To achieve this a new Teukolsky equation solver code was developed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grantová schémata na UK</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
108
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
044004
Kód UT WoS článku
001146267300004
EID výsledku v databázi Scopus
2-s2.0-85167880630