Extreme mass ratio inspirals into black holes surrounded by matter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F22%3A00561046" target="_blank" >RIV/67985815:_____/22:00561046 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10447324
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.106.044069" target="_blank" >https://doi.org/10.1103/PhysRevD.106.044069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.106.044069" target="_blank" >10.1103/PhysRevD.106.044069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extreme mass ratio inspirals into black holes surrounded by matter
Popis výsledku v původním jazyce
Inspirals of stellar-mass compact objects into massive black holes, known as extreme mass ratio inspirals (EMRIs), are one of the key targets for upcoming space-based gravitational-wave detectors. In this paper we take the first steps needed to systematically incorporate the effect of external gravitating matter on EMRIs. We model the inspiral as taking place in the field of a Schwarzschild black hole perturbed by the gravitational field of a far axisymmetric distribution of mass enclosing the system. We take into account the redshift, frame-dragging, and quadrupolar tide caused by the enclosing matter, thus incorporating all effects to inverse third order of the characteristic distance of the enclosing mass. Then, we use canonical perturbation theory to obtain the action-angle coordinates and Hamiltonian for mildly eccentric precessing test-particle orbits in this background. Finally, we use this to efficiently compute mildly eccentric inspirals in this field and document their properties. This work shows the advantages of canonical perturbation theory for the modeling EMRIs, especially in the cases when the background deviates from the standard black hole fields.
Název v anglickém jazyce
Extreme mass ratio inspirals into black holes surrounded by matter
Popis výsledku anglicky
Inspirals of stellar-mass compact objects into massive black holes, known as extreme mass ratio inspirals (EMRIs), are one of the key targets for upcoming space-based gravitational-wave detectors. In this paper we take the first steps needed to systematically incorporate the effect of external gravitating matter on EMRIs. We model the inspiral as taking place in the field of a Schwarzschild black hole perturbed by the gravitational field of a far axisymmetric distribution of mass enclosing the system. We take into account the redshift, frame-dragging, and quadrupolar tide caused by the enclosing matter, thus incorporating all effects to inverse third order of the characteristic distance of the enclosing mass. Then, we use canonical perturbation theory to obtain the action-angle coordinates and Hamiltonian for mildly eccentric precessing test-particle orbits in this background. Finally, we use this to efficiently compute mildly eccentric inspirals in this field and document their properties. This work shows the advantages of canonical perturbation theory for the modeling EMRIs, especially in the cases when the background deviates from the standard black hole fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grantová schémata na UK</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
106
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
044069
Kód UT WoS článku
000850772800005
EID výsledku v databázi Scopus
2-s2.0-85137402237