Mathematical Models of Diffusion in Physiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F24%3A00598244" target="_blank" >RIV/67985823:_____/24:00598244 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.biomed.cas.cz/physiolres/pdf/2024/73_S471.pdf" target="_blank" >https://www.biomed.cas.cz/physiolres/pdf/2024/73_S471.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33549/physiolres.935292" target="_blank" >10.33549/physiolres.935292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Models of Diffusion in Physiology
Popis výsledku v původním jazyce
Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation where D is diffusion coefficient and Δ is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.
Název v anglickém jazyce
Mathematical Models of Diffusion in Physiology
Popis výsledku anglicky
Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation where D is diffusion coefficient and Δ is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physiological Research
ISSN
0862-8408
e-ISSN
1802-9973
Svazek periodika
73
Číslo periodika v rámci svazku
Suppl.1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
"S471"-"S476"
Kód UT WoS článku
001295308400026
EID výsledku v databázi Scopus
2-s2.0-85202784798