Operátory s ohraničenými mocninami a supercyklické vektory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F03%3A00106806" target="_blank" >RIV/67985840:_____/03:00106806 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Power bounded operators and supercyclic vectors
Popis výsledku v původním jazyce
By the well-known result of Brown, Chevreau and Pearcy, every Hilbert space contraction with spectrum containing the unit circle has a nontrivial closed invariant subspace. Equivalently, there is a nonzero vector which is not cyclic. We show that each power bounded operator on a Hilbert space with spectral radius equal to one has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset.
Název v anglickém jazyce
Power bounded operators and supercyclic vectors
Popis výsledku anglicky
By the well-known result of Brown, Chevreau and Pearcy, every Hilbert space contraction with spectrum containing the unit circle has a nontrivial closed invariant subspace. Equivalently, there is a nonzero vector which is not cyclic. We show that each power bounded operator on a Hilbert space with spectral radius equal to one has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F0041" target="_blank" >GA201/03/0041: Metody teorie funkcí a Banachových algeber v teorii operátorů II.</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Svazek periodika
131
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
3807-3812
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—