Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00338973" target="_blank" >RIV/67985840:_____/10:00338973 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations
Popis výsledku v původním jazyce
We construct and analyse a nodal O(h4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. The scheme is based on averaging the equations that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions. This approach presents a three-dimensional generalization of a two-dimensional averaging of linear and bilinear elements which also exhibits nodal O(h4)-superconvergence (ultraconvergence). The obtained superconvergence result is illustrated by two numerical examples.
Název v anglickém jazyce
Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations
Popis výsledku anglicky
We construct and analyse a nodal O(h4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. The scheme is based on averaging the equations that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions. This approach presents a three-dimensional generalization of a two-dimensional averaging of linear and bilinear elements which also exhibits nodal O(h4)-superconvergence (ultraconvergence). The obtained superconvergence result is illustrated by two numerical examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100190803" target="_blank" >IAA100190803: Metoda konečných prvků pro vícerozměrné problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Mathematics
ISSN
0254-9409
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000274262000001
EID výsledku v databázi Scopus
—