Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00352519" target="_blank" >RIV/67985840:_____/10:00352519 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?
Popis výsledku v původním jazyce
The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of the function on that input. We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, P/not=UP and TFNP^NP functions are not computable in polynomial-time with an NP oracle.
Název v anglickém jazyce
Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?
Popis výsledku anglicky
The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of the function on that input. We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, P/not=UP and TFNP^NP functions are not computable in polynomial-time with an NP oracle.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000272912800009
EID výsledku v databázi Scopus
—