Polynomial-Time in PDDL Input Size: Making the Delete Relaxation Feasible for Lifted Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350205" target="_blank" >RIV/68407700:21230/21:00350205 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2021/567" target="_blank" >https://doi.org/10.24963/ijcai.2021/567</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2021/567" target="_blank" >10.24963/ijcai.2021/567</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial-Time in PDDL Input Size: Making the Delete Relaxation Feasible for Lifted Planning
Popis výsledku v původním jazyce
Polynomial-time heuristic functions for planning are commonplace since 20 years. But polynomial-time in which input? Almost all existing approaches are based on a grounded task representation, not on the actual PDDL input which is exponentially smaller. This limits practical applicability to cases where the grounded representation is "small enough". Previous attempts to tackle this problem for the delete relaxation leveraged symmetries to reduce the blow-up. Here we take a more radical approach, applying an additional relaxation to obtain a heuristic function that runs in time polynomial in the size of the PDDL input. Our relaxation splits the predicates into smaller predicates of fixed arity K. We show that computing a relaxed plan is still NP-hard (in PDDL input size) for K>=2, but is polynomial-time for K=1. We implement a heuristic function for K=1 and show that it can improve the state of the art on benchmarks whose grounded representation is large.
Název v anglickém jazyce
Polynomial-Time in PDDL Input Size: Making the Delete Relaxation Feasible for Lifted Planning
Popis výsledku anglicky
Polynomial-time heuristic functions for planning are commonplace since 20 years. But polynomial-time in which input? Almost all existing approaches are based on a grounded task representation, not on the actual PDDL input which is exponentially smaller. This limits practical applicability to cases where the grounded representation is "small enough". Previous attempts to tackle this problem for the delete relaxation leveraged symmetries to reduce the blow-up. Here we take a more radical approach, applying an additional relaxation to obtain a heuristic function that runs in time polynomial in the size of the PDDL input. Our relaxation splits the predicates into smaller predicates of fixed arity K. We show that computing a relaxed plan is still NP-hard (in PDDL input size) for K>=2, but is polynomial-time for K=1. We implement a heuristic function for K=1 and show that it can improve the state of the art on benchmarks whose grounded representation is large.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-9-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
4119-4126
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Montreal
Datum konání akce
19. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—