Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Method of rotations for bilinear singular integrals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00364816" target="_blank" >RIV/67985840:_____/11:00364816 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985840:_____/11:00391049

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Method of rotations for bilinear singular integrals

  • Popis výsledku v původním jazyce

    Suppose that $/Omega$ lies in the Hardy space $H^1$ of the unit circle $/mathbf S^{1}$ in $/mathbf R^2$. We use the Calderón-Zygmund method of rotations and the uniform boundedness of the bilinear Hilbert transforms to show that the bilinear singular operator with the rough kernel $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is bounded from $L^p(/mathbf R)/times L^q(/mathbf R)$ to $L^r(/mathbf R)$, for a large set of indices satisfying $1/p+1/q=1/r$. We also provide an example of a function $/Omega$ in $L^q(/mathbf S^{ 1})$ with mean value zero to show that the singular integral operator given by convolution with $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is not bounded from $L^{p_1}(/mathbf R)/times L^{p_2} (/mathbf R )$ to $ L^{p}(/mathbf R )$ for $1/2<p<1$, $1<p_1,p_2</infty$, $1/p_1+1/p_2=1/p$, $1/le q</infty$, and $1/p+1/q>2.

  • Název v anglickém jazyce

    Method of rotations for bilinear singular integrals

  • Popis výsledku anglicky

    Suppose that $/Omega$ lies in the Hardy space $H^1$ of the unit circle $/mathbf S^{1}$ in $/mathbf R^2$. We use the Calderón-Zygmund method of rotations and the uniform boundedness of the bilinear Hilbert transforms to show that the bilinear singular operator with the rough kernel $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is bounded from $L^p(/mathbf R)/times L^q(/mathbf R)$ to $L^r(/mathbf R)$, for a large set of indices satisfying $1/p+1/q=1/r$. We also provide an example of a function $/Omega$ in $L^q(/mathbf S^{ 1})$ with mean value zero to show that the singular integral operator given by convolution with $/mathrm{p.v.} /, /Omega(x/|x|) |x|^{-2}$ is not bounded from $L^{p_1}(/mathbf R)/times L^{p_2} (/mathbf R )$ to $ L^{p}(/mathbf R )$ for $1/2<p<1$, $1<p_1,p_2</infty$, $1/p_1+1/p_2=1/p$, $1/le q</infty$, and $1/p+1/q>2.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/KJB100190901" target="_blank" >KJB100190901: Singulární a maximální operátory na prostorech funkcí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Communications in Mathematical Analysis

  • ISSN

    1938-9787

  • e-ISSN

  • Svazek periodika

    3

  • Číslo periodika v rámci svazku

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    99-107

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus