Component-wise positivity of solutions to periodic boundary problem for linear functional differential system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00378921" target="_blank" >RIV/67985840:_____/12:00378921 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1186/1029-242X-2012-112" target="_blank" >http://dx.doi.org/10.1186/1029-242X-2012-112</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1029-242X-2012-112" target="_blank" >10.1186/1029-242X-2012-112</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Component-wise positivity of solutions to periodic boundary problem for linear functional differential system
Popis výsledku v původním jazyce
The classical Ważewski theorem claims that the non-negativity of non-diagonal coefficients is necessary and sufficient for non-negativity of all the components of solution vector to a system of linear differential inequalities of the first order. Although this result was extended on various boundary value problems and on delay differential systems, analogs of these heavy restrictions on non-diagonal coefficients preserve in all assertions of this sort. It is clear from formulas of the integral representation of the general solution that these theorems claim actually the positivity of all elements of Green?s matrix. The method to compare only one component of the solution vector, which does not require such heavy restrictions, is proposed in this article. Note that comparison of only one component of the solution vector means the positivity of elements in a corresponding row of Green?s matrix.
Název v anglickém jazyce
Component-wise positivity of solutions to periodic boundary problem for linear functional differential system
Popis výsledku anglicky
The classical Ważewski theorem claims that the non-negativity of non-diagonal coefficients is necessary and sufficient for non-negativity of all the components of solution vector to a system of linear differential inequalities of the first order. Although this result was extended on various boundary value problems and on delay differential systems, analogs of these heavy restrictions on non-diagonal coefficients preserve in all assertions of this sort. It is clear from formulas of the integral representation of the general solution that these theorems claim actually the positivity of all elements of Green?s matrix. The method to compare only one component of the solution vector, which does not require such heavy restrictions, is proposed in this article. Note that comparison of only one component of the solution vector means the positivity of elements in a corresponding row of Green?s matrix.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Inequalities and Applications
ISSN
1025-5834
e-ISSN
—
Svazek periodika
112
Číslo periodika v rámci svazku
May 22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000317835000001
EID výsledku v databázi Scopus
—