Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fragments of approximate counting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00433869" target="_blank" >RIV/67985840:_____/14:00433869 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1017/jsl.2013.37" target="_blank" >http://dx.doi.org/10.1017/jsl.2013.37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2013.37" target="_blank" >10.1017/jsl.2013.37</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fragments of approximate counting

  • Popis výsledku v původním jazyce

    We study the long-standing open problem of giving for all Sigma(b)(1) separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jerabek's theories for approximate counting and their subtheories. We show that the for all Sigma(b)(1) Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T-2(1) augmented with the surjective weak pigeonhole principle for polynomial time functions.

  • Název v anglickém jazyce

    Fragments of approximate counting

  • Popis výsledku anglicky

    We study the long-standing open problem of giving for all Sigma(b)(1) separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jerabek's theories for approximate counting and their subtheories. We show that the for all Sigma(b)(1) Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FPNP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T-2(1) augmented with the surjective weak pigeonhole principle for polynomial time functions.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Svazek periodika

    79

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    496-525

  • Kód UT WoS článku

    000339939900007

  • EID výsledku v databázi Scopus