Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Well/ill posedness for the Euler-Korteweg-Poisson system and related problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443854" target="_blank" >RIV/67985840:_____/15:00443854 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1080/03605302.2014.972517" target="_blank" >http://dx.doi.org/10.1080/03605302.2014.972517</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03605302.2014.972517" target="_blank" >10.1080/03605302.2014.972517</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Well/ill posedness for the Euler-Korteweg-Poisson system and related problems

  • Popis výsledku v původním jazyce

    We consider a general Euler-Korteweg-Poisson system in R3, supplemented with the space periodic boundary conditions, where the quantum hydrodynamics equations and the classical fluid dynamics equations with capillarity are recovered as particular examples. We show that the system admits infinitely many global-intime weak solutions for any sufficiently smooth initial data including the case of a vanishing initial density - the vacuum zones. Moreover, there is a vast family of initial data, for which theCauchy problem possesses infinitely many dissipative weak solutions, i.e. the weak solutions satisfying the energy inequality. Finally, we establish the weak-strong uniqueness property in a class of solutions without vacuum. In this paper we show that, even in presence of a dispersive tensor, we have the same phenomena found by De Lellis and Székelyhidi.

  • Název v anglickém jazyce

    Well/ill posedness for the Euler-Korteweg-Poisson system and related problems

  • Popis výsledku anglicky

    We consider a general Euler-Korteweg-Poisson system in R3, supplemented with the space periodic boundary conditions, where the quantum hydrodynamics equations and the classical fluid dynamics equations with capillarity are recovered as particular examples. We show that the system admits infinitely many global-intime weak solutions for any sufficiently smooth initial data including the case of a vanishing initial density - the vacuum zones. Moreover, there is a vast family of initial data, for which theCauchy problem possesses infinitely many dissipative weak solutions, i.e. the weak solutions satisfying the energy inequality. Finally, we establish the weak-strong uniqueness property in a class of solutions without vacuum. In this paper we show that, even in presence of a dispersive tensor, we have the same phenomena found by De Lellis and Székelyhidi.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Communications in Partial Differential Equations

  • ISSN

    0360-5302

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    1314-1335

  • Kód UT WoS článku

    000353691700005

  • EID výsledku v databázi Scopus

    2-s2.0-84944443908