Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Asymptotic analysis of compressible, viscous, and heat conducting fluids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00444396" target="_blank" >RIV/67985840:_____/15:00444396 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Asymptotic analysis of compressible, viscous, and heat conducting fluids

  • Popis výsledku v původním jazyce

    This is a survey of recent results concerning the mathematical theory of compressible, viscous, and heat conducting fluids. Starting from the basic physical principles, notably the First and Second laws of thermodynamics, we introduce a concept of weak solutions to complete fluid systems and analyze their asymptotic behavior. In particular, the long time behavior and scale analysis will be performed. We also introduce a new concept of relative entropy for the system and show how it can be used in the problem of weak-strong uniqueness and the inviscid limits.

  • Název v anglickém jazyce

    Asymptotic analysis of compressible, viscous, and heat conducting fluids

  • Popis výsledku anglicky

    This is a survey of recent results concerning the mathematical theory of compressible, viscous, and heat conducting fluids. Starting from the basic physical principles, notably the First and Second laws of thermodynamics, we introduce a concept of weak solutions to complete fluid systems and analyze their asymptotic behavior. In particular, the long time behavior and scale analysis will be performed. We also introduce a new concept of relative entropy for the system and show how it can be used in the problem of weak-strong uniqueness and the inviscid limits.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Matematická a počítačová analýza evolučních procesů v nelineárních viskoelastických tekutinách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Nonlinear Dynamics in Partial Differential Equations

  • ISBN

    978-4-86497-022-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    34

  • Strana od-do

    1-33

  • Název nakladatele

    Mathematical Society of Japan

  • Místo vydání

    Tokyo

  • Místo konání akce

    Kyushu

  • Datum konání akce

    12. 9. 2011

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000358751100001