Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Součet úhlů ve čtyřstěnu

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00444826" target="_blank" >RIV/67985840:_____/15:00444826 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    čeština

  • Název v původním jazyce

    Součet úhlů ve čtyřstěnu

  • Popis výsledku v původním jazyce

    Kolik je součet úhlů v rovinném trojúhelníku? Odpověď je dobře známá: 180°, tj pí radiánů. Méně je ovšem známá odpověď na podobnou otázku pro čtyřstěn. V tomto článku nejprve podáme přehled klasických výsledků z článku [5] J.W. Gadduma, že pro součet dihedrálních úhlů měřených v radiánech mezi stěnami čtyřstěnu platí 2pí<suma<3pí a pro součet A prostorových úhlů ve steradiánech ve vrcholech je 0<A<2pí. Ukážeme, že tyto odhady jsou optimální v tom smyslu, ze je nelze zlepšit. Podle [1] však pro netupoúhlé čtyřstěny platí lepší odhady 2pí<suma<2,5pí a 0<A<pí. Takové čtyřstěny mají celou řadu důležitých aplikací - viz [3].

  • Název v anglickém jazyce

    The sum of angles in a tetrahedron

  • Popis výsledku anglicky

    We show that the sum of dihedral angles in an arbitrary tetrahedron is greater than 2pi and less then 3pi. For a nonobtuse tetrahedron the upper bound can be reduced to 5pi/2. We also prove that the sum of solid angles in an arbitrary tetrahedron is lessthan 2pi, whereas for a nonobtuse tetrahedron it is only pi. All the above bounds are optimal in the sense that they cannot be improved.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-02067S" target="_blank" >GA14-02067S: Pokročilé metody pro analýzu proudových polí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Pokroky matematiky, fyziky & astronomie

  • ISSN

    0032-2423

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    113-122

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus